



## Micromechanics of intra-laminar hybrid lamina with hollow fibres: a RVE model

Giuseppe Romano PhD student in mechanical engineering at the University of Manchester



## Thermosetting composites advantages and disadvantages



*Advantages:* Specific strength Specific stiffness **Disadvantages:** Poor damage tolerance Low toughness



Barely visible external damage can lead to significant delamination





How to balance these properties?





## Hybridization in composites: an overview



#### <u>Hybrid Composites:</u>

- Fibre hybridization (i.e. two or more fibre types)
- Matrix hybridization (i.e. two or more matrix types)

#### Balance in-plane and out-of-plane properties

Cost-effective solution to improve damage tolerance



Conducive failure modes to improve damage tolerance

#### Hybridisation scale:





Swolfs et al. Composites Part A (2014) p. 181-200 Dalfi et al. Polymer Composites (2019) p. 4573–4587.



## Solid/Hollow fibres hybridization: an opportunity





- ✓ Hollow fibre can be used as a channel to inject resin and repair the damaged structure
- ✓ Alter the specific elastic properties and micro stress fields compared to the nonhollow hybrid RVE





## **Periodic Boundary Conditions**



Periodic microstructure



Periodic displacement



 $\vec{u}(0, x_2, x_3) - \vec{u}(D, x_2, x_3) = \overrightarrow{U_1}$  $\vec{u}(x_1, 0, x_3) - \vec{u}(x_1, L, x_3) = \overrightarrow{U_2}$  $\vec{u}(x_1, x_2, 0) - \vec{u}(x_1, x_2, L) = \overrightarrow{U_3}$ 



## Volume average homogenization



Solid fibre 3D RVE Hollow fibre Matrix Laminate with intralaminar fibre hybridization  $x_3$ Intra-laminar fibre hybrid lamina  $x_2$ 

 $x_1$ 

(Banerjee et al., 2014)

|         | <i>E</i> <sub>11</sub><br>[GPa] | $E_{22} = E_{33}$<br>[GPa] | $G_{12} = G_{13}$<br>[GPa] | G <sub>23</sub><br>[GPa] | $\nu_{12} = \nu_{13}$ | $v_{23}$ | ρ<br>[g/cm <sup>3</sup> ] |
|---------|---------------------------------|----------------------------|----------------------------|--------------------------|-----------------------|----------|---------------------------|
| E-glass | 72.4                            | 72.4                       | 30.2                       | 30.2                     | 0.2                   | 0.2      | 2.54                      |
| Carbon  | 263                             | 19                         | 27.6                       | 7.04                     | 0.2                   | 0.35     | 1.78                      |
| Ероху   | 3.5                             | 3.5                        | 1.29                       | 1.29                     | 0.35                  | 0.35     | 1.29                      |

Banerjee et al. 2014. Composites Part B. Pag. 318-327.

$$\widehat{\sigma}_{ij} = \frac{1}{V} \int_{V} \sigma_{ij} dV$$
Lamina constants
$$\widehat{\varepsilon}_{ij} = \frac{1}{V} \int_{V} \varepsilon_{ij} dV$$

$$\widehat{\varepsilon}_{ij} = \widehat{V} \int_{V} \varepsilon_{ij} dV$$

$$V = L * L * D$$
Lamina constants
$$\widehat{c}_{11}$$

$$\widehat{c}_{22} = \widehat{c}_{33}$$

$$\widehat{c}_{12} = \widehat{c}_{13}$$

$$\widehat{c}_{23}$$

$$\widehat{v}_{12} = \widehat{v}_{13}$$

$$\widehat{v}_{23}$$

- $\checkmark \sigma_{ij}, \epsilon_{ij}$  are the micro stresses and micro strains
- $\checkmark \hat{\sigma}_{ij}, \hat{\epsilon}_{ij}$  are the macro stresses and macro strains

#### Assumptions:

- ✓ Linear elastic behaviour of the constituent materials
- ✓ Isotropic or transversely isotropic fibres
- ✓ Isotropic matrix
- ✓ No micro voids
- ✓ Perfect fibre-matrix interface bonding
- ✓ No yielding or failure



## Validation of the RVE model



## (Banerjee et al., 2014) Rule of mixture $\hat{E}_{11} = E_{11c} V_{fc} + E_{11g} V_{fg} + E_m V_m$ $\hat{v}_{12} = v_{12c} V_{fc} + v_{12g} V_{fg} + v_m V_m$ Modified Halpin-Tsai $\frac{\hat{E}}{E_m} = \frac{1 + \xi(\eta_c V_{fc} + \eta_g V_{fg})}{1 - (\eta_c V_{fc} + \eta_g V_{fg})}$ $\frac{\hat{G}}{G_m} = \frac{1 + \xi(\eta_c V_{fc} + \eta_g V_{fg})}{1 - (\eta_c V_{fc} + \eta_g V_{fg})}$

 $\xi$ (Fibre packing, material combination)  $\eta$ (Loading,  $\xi$ )

| $\hat{E} = \hat{E}_{22} = \hat{E}_{33} = \hat{E}_{\mathrm{T}}$ |
|----------------------------------------------------------------|
| $\hat{G} = \hat{G}_{12} = \hat{G}_{13} = \hat{G}_{LT}$         |
| $\hat{G} = \hat{G}_{23} = \hat{G}_{\mathrm{T}}$                |

Transverse Isotropy  $\hat{v}_{23} = \hat{v}_{T} = \frac{\hat{E}_{T}}{2\hat{G}_{T}} - 1$ 

Variations are due to the packing system and element strategy used in the reference->  $\xi$  chosen

The comparison of the homogenised lamina properties of **carbon/epoxy** lamina (with  $V_{fC} \approx 0.60$ ) using the RVE and analytical models

|               | Ê <sub>11</sub><br>[GPa] | $     \hat{E}_{22} = \hat{E}_{33}     [GPa] $ | $ \begin{array}{l} \widehat{G}_{12} = \ \widehat{G}_{13} \\ \text{[GPa]} \end{array} $ | <i>Ĝ</i> 23<br>[GPa] | $\hat{\nu}_{12} = \hat{\nu}_{13}$ | $\hat{\nu}_{23}$ |
|---------------|--------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-----------------------------------|------------------|
| RVE           | $158.63 \pm 0.00$        | 8.95 <u>+</u> 0.03                            | $5.18\pm0.05$                                                                          | 3.15 ±0.01           | $0.25\pm0.00$                     | $0.44 \pm 0.00$  |
| Analytical    | 159.20                   | 8.61                                          | 4.41                                                                                   | 3.06                 | 0.26                              | 0.41             |
| Variation (%) | 0.36                     | 3.95                                          | 17.46                                                                                  | 2.94                 | 3.85                              | 8.14             |

The comparison of the homogenised lamina properties of **E-glass/epoxy** lamina (with  $V_{fG} \approx 0.60$ ) using the RVE and analytical models

|               | <i>Ê</i> <sub>11</sub><br>[GPa] | $\hat{E}_{22} = \hat{E}_{33}$ [GPa] | $\hat{G}_{12} = \hat{G}_{13}$ [GPa] | <i>Ĝ</i> 23<br>[GPa] | $\hat{\nu}_{12} = \hat{\nu}_{13}$ | $\hat{\nu}_{23}$ |
|---------------|---------------------------------|-------------------------------------|-------------------------------------|----------------------|-----------------------------------|------------------|
| RVE           | $44.82\pm0.00$                  | 13.98 <u>+</u> 0.31                 | $5.53 \pm 0.11$                     | $5.13 \pm 0.04$      | $0.25\pm0.01$                     | $0.38\pm0.01$    |
| Analytical    | 44.84                           | 12.21                               | 4.47                                | 4.32                 | 0.25                              | 0.40             |
| Variation (%) | 0.04                            | 14.50                               | 23.71                               | 18.75                | 0.00                              | 8.03             |

The comparison of the homogenised lamina properties of **carbon/solid-E-glass/epoxy lamina** (with  $V_{fC} \approx 0.15$  and  $V_{fG} \approx 0.45$ ) using the RVE and analytical models

|               | $\widehat{E}_{11}$ [GPa] | $\hat{E}_{22} = \hat{E}_{33}$ [GPa] | $\hat{G}_{12} = \hat{G}_{13}$ [GPa] | <i>Ĝ</i> 23<br>[GPa] | $\hat{\nu}_{12} = \hat{\nu}_{13}$ | $\hat{v}_{23}$ |
|---------------|--------------------------|-------------------------------------|-------------------------------------|----------------------|-----------------------------------|----------------|
| RVE           | $74.36 \pm 0.00$         | $12.34 \pm 0.16$                    | $5.33 \pm 0.08$                     | $4.40\pm0.02$        | $0.25\pm0.00$                     | $0.40\pm0.00$  |
| Analytical    | 73.43                    | 11.27                               | 4.45                                | 4.31                 | 0.26                              | 0.31           |
| Variation (%) | 1.27                     | 9.49                                | 19.78                               | 2.09                 | 3.85                              | 30.11          |



## **Specific elastic properties**



The comparison of the **homogenised properties** of carbon/epoxy (L-1), E-glass/epoxy (L-2), carbon/solid-E-glass/epoxy (L-3) and carbon/hollow-E-glass/epoxy (L-4) laminae.

| Lamina | Ê <sub>11</sub><br>[GPa] | $\hat{E}_{22} = \hat{E}_{33}$ [GPa] | $\hat{G}_{12} = \hat{G}_{13}$ [GPa] | Ĝ <sub>23</sub><br>[GPa] | $\hat{\nu}_{12} = \hat{\nu}_{13}$ | $\hat{v}_{23}$  | ρ̂<br>[g/cm <sup>3</sup> ] |
|--------|--------------------------|-------------------------------------|-------------------------------------|--------------------------|-----------------------------------|-----------------|----------------------------|
| L-1    | $158.63\pm0.00$          | $8.95 \pm 0.03$                     | $5.18 \pm 0.05$                     | $3.15 \pm 0.01$          | $0.25\pm0.00$                     | $0.44 \pm 0.00$ | 1.58                       |
| L-2    | $44.82\pm0.00$           | 13.98 <u>+</u> 0.31                 | 5.53 <u>+</u> 0.11                  | $5.13 \pm 0.04$          | $0.25\pm0.01$                     | $0.38\pm0.01$   | 2.04                       |
| L-3    | $74.36\pm0.00$           | $12.34 \pm 0.16$                    | $5.33 \pm 0.08$                     | $4.40\pm0.02$            | $0.25\pm0.00$                     | $0.40\pm0.00$   | 1.93                       |
| L-4    | $67.81 \pm 0.00$         | $10.60\pm0.04$                      | $4.98 \pm 0.04$                     | $3.67\pm0.00$            | $0.25\pm0.00$                     | $0.44\pm0.00$   | 1.70                       |

 $V_{fC} \approx 0.15$   $V_{fE} = V_{fH} \approx 0.45$   $V_{fH-net} \approx 0.36$ 20% hollowness

The comparison of the **specific homogenised properties** of carbon/epoxy (L-1), E-glass/epoxy (L-2), carbon/solid-E-glass/epoxy (L-3) and carbon/hollow-E-glass/epoxy (L-4) laminae

| Lamina | $\widehat{E}_{11}/\widehat{ ho}$ [GPa. cm <sup>3</sup> /g] | $\hat{E}_{22}/\hat{ ho} = \hat{E}_{33}/\hat{ ho}$<br>[GPa. cm <sup>3</sup> /g] | $\hat{G}_{12}/\hat{ ho} = \hat{G}_{13}/\hat{ ho}$<br>[GPa. cm <sup>3</sup> /g] | <i>Ĝ</i> <sub>23</sub> / <i>ρ̂</i><br>[GPa. cm <sup>3</sup> /g] |
|--------|------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|
| L-1    | $100.15 \pm 0.00$                                          | $5.65 \pm 0.02$                                                                | $3.27 \pm 0.03$                                                                | $1.99 \pm 0.01$                                                 |
| L-2    | $21.97\pm0.00$                                             | 6.85 ± 0.15                                                                    | $2.71\pm0.05$                                                                  | $2.51 \pm 0.02$                                                 |
| L-3    | $38.61 \pm 0.00$                                           | $6.41 \pm 0.08$                                                                | $2.77\pm0.04$                                                                  | 2.28 ± 0.01                                                     |
| L-4    | 39.95 <u>+</u> 0.00                                        | $6.24 \pm 0.02$                                                                | $2.93 \pm 0.02$                                                                | $2.16\pm0.00$                                                   |

- carbon/hollow-E-glass/epoxy density comparable to carbon/epoxy
- $\hat{E}_{11}/\hat{\rho}$  and  $\hat{G}_{12}/\hat{\rho}$  are slightly higher in and carbon/hollow-E-glass/epoxy than carbon/solid-E-glass/epoxy.
- The hollow fibre content lowers the specific transverse elastic properties  $(\hat{E}_{22}/\hat{\rho}, \hat{E}_{33}/\hat{\rho})$  and  $\hat{G}_{23}/\hat{\rho})$  compared to E-glass/epoxy lamina.
- $\hat{E}_{11}/\hat{\rho}$  and  $\hat{G}_{12}/\hat{\rho} = \hat{G}_{13}/\hat{\rho}$  are increased compared to E-glass/epoxy



## Matrix von Mises micro-stress fields





- Slightly higher maximum stress for 20% hollowness
- Stress redistribution and larger stress amplification region



## Conclusions

- The effective density of carbon/hollow-E-glass/epoxy lamina is comparable to that of carbon/epoxy lamina.
- Higher longitudinal modulus ( $\hat{E}_{11}$ ) is obtained for carbon/solid-E-glass/epoxy and carbon/hollow-E-glass/epoxy laminae when compared to that of solid-E-glass/epoxy lamina.
- An increase in the transverse Poisson's ratio ( $\hat{v}_{23}$ ) is observed in carbon/hollow-E-glass/epoxy lamina because of the hollow fibre content compared to solid-E-glass/epoxy lamina.
- The hollow fibre content lowers the specific transverse elastic properties  $(\hat{E}_{22}/\hat{\rho}, \hat{E}_{33}/\hat{\rho})$  and  $\hat{G}_{23}/\hat{\rho})$ , while having a negligible effect on the major Poisson's ratios ( $\hat{\nu}_{12} = \hat{\nu}_{13}$ ) compared to solid-E-glass/epoxy lamina.
- The specific longitudinal elastic modulus  $(\hat{E}_{11}/\hat{\rho})$ , and the specific longitudinal shear modulus  $(\hat{G}_{12}/\hat{\rho} = \hat{G}_{13}/\hat{\rho})$  are increased compared to solid-E-glass/epoxy.

## **Future work**

- Investigate different carbon/E-glass/epoxy fibre volume fraction
- Investigate different hollowness % for hollow E-glass fibres
- Interfacial stresses analysis
- Progress damage modelling

Alter the micro stresses and specific elastic properties

# Thank you for your attention!

# Questions?