Probabilistic Sensitivity Studies of a Multiscale Model for Bonded Composite Pi-joint Performance

ICCM 23

International Conference on Composite Materials

Belfast 30 July – 4 August 2023

Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

ITARI

David Riha¹, Matthew Kirby¹, Marcus Stanfield¹, Carl Popelar¹, Kevin Hoos², Endel Iarve², and David Mollenhauer³

Southwest Research Institute
 University of Texas at Arlington Research Institute
 Air Force Research Laboratory

- I. Background and Motivation: Process-to-Performance Simulation Framework for Bonded Composites
- II. Homogenized Pi-joint Model Approach
 - 1. Mesoscale Textile Model
 - 2. Macroscale, Homogenized Pi-joint Model
- III. Probabilistic Analysis and Uncertainty Quantification
- IV. Global Sensitivity Analysis Results and Discussion

V. Summary

Background and Motivation

- **Bonded composite primary structures for advanced aircraft** systems
 - Advantages: (1) reduced weight, (2) reduced part count, and (3) improved performance
 - **Challenges:** (1) limited software tools for design and analysis, (2) impact of uncertainties and manufacturing defects not well understood², and (3) fasteners used because bond is not trusted
- **OPPERA Program: O**MC (Organic Matrix Composite) **P**rocessto-Performance Evaluation, Research, and Analysis
 - **Program objective:** Develop validated process-to-performance (P2P) methods to predict static response and fatigue life of bonded composite structures \rightarrow reduce cost and schedule impacts during certification
 - **Demonstration article:** bonded composite pi-preform joint
 - **Study objective:** develop engineering tool for assessing structural response of bonded composite pi-joints under uncertainty
 - **Research question:** What is the relationship between textile architecture and the structural response of the Pi-joint?

Pi-joint Demonstration Article¹

VERGEN

Overview of OPPERA P2P Framework

- ► Multiscale framework for process-to-performance (P2P) modeling → mesoscale fiber architecture to macroscale component response
- ► Flexible → multiple paths through the framework to capture various phenomena and allow for flexibility in solution fidelity

Predictive Capability

- 1. Fiber bed compaction and relaxation
- 2. Material properties, residual stresses, and porosity evolution during cure
- 3. Damage evolution at mesoscale and macroscale
- 4. Final part capability

Comparison Approach Comparison Approach

- VTMS simulates the morphology of the textile RVE after weaving
 - Digital chains represent bundles of fibers within the tow \rightarrow used to achieve tow fiber volume fraction without discretely modeling every fiber in the tow
 - Final architecture based on Fiber relaxation and compaction steps
 - Surface smoothing and volume-based approaches to generate the tow geometry for FEA
- BSAM simulates the mechanical and fracture response of the textile RVE composite
 - The independent mesh method is used for meshing fiber tows and matrix
 - Employs periodic cluster method (PCM)³ to address limitations associated with non-conforming mesh for side-to-side
 - Calculate the effective elastic properties from 6 loading state

Abagus simulates the structural response of the Pi-joint

- Over 100 geometric, mechanical, and fracture parameters in parametric pi-joint model
- Linear elastic material properties for pi-preform, web, and skin and cohesive zone model for adhesive bond

CAPERA Textile Homogenization (VTMS + BSAM)

- Conforming mesh is an issue for complicated textile geometries
- The independent mesh method (IMM) is used to address this meshing issue
 - Combination of direct meshing of the tows and a voxel-based methodology within the matrix
 - Integration enrichment for connectivity between the tows and matrix
 - Limitation: requires node-to-node periodicity on opposing sides of the finite element mesh

IMM node-to-node periodicity limitation is addressed by periodic cluster method (PCM)³

- Utilizes additional plates at the edges of the RVE that connect via penalty connection
- Displacements between opposing periodic clusters are tied together and properties are tailored to provide very little additional stiffness to the model
- Satisfies node-to-node periodicity requirement and allows RVE mesh to be non-conforming side-to-side

Calculate the 9 effective elastic properties from 6 loading states

[3] Hoos et al. AIAA SciTech, 2022.

CARRENT OF CONTRACT OF CONTRACT.

Parametric Pi-joint Model Development

Parametric model of the pi-joint in Abaqus⁵

- Over 100 geometric, mechanical, and fracture parameters
- Linear elastic material properties for pi-preform, web, and skin
- Cohesive zone model for adhesive bond
- Predicts stresses in pi-preform \rightarrow does not model damage in preform
- Simulates pure pull-off (PO), pure lateral bend (LB), and combined pull-off plus lateral bend (PO+LB) loading configurations
- Currently developing capabilities for pure shear (PS) loading configuration

Focus of this study is predicting the lateral bend (LB) response of the pi-joint

- Only have validated mesoscale model for pi-preform leg architecture
- LB response is more sensitive to leg architecture than PO due to bending in the leg
- In this study, the pi-preform base and leg are assumed to have same architecture

During LB pi-joint testing, failures have been observed in the adhesive (Mode I fracture) and the pi-preform radius

[5] Kirby et al. AIAA SciTech, 2023. Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2303 Cleared: 5/12/2023)

Pull-off

Lateral Bend

Predicted Adhesive Failure During Lateral Bend Testing

Macroscale Responses of Interest

Failure of the pi-preform in the radius between base and leg is a concern (failure modes 1 & 3)

- The model does not capture pi-preform damage, so max stress & strain in this region are the quantities of interest
- Future work could involve using homogenized strength or strain-based criteria to predict damage onset in preform

Macroscale model responses of interest

- Maximum load and stiffness (slope) from force-displacement curve
- Maximum stress in pi-preform radius at maximum load \rightarrow associated with failure modes 1 & 3

Probabilistic Analysis – Sensitivity Studies CPPERA

NESSUS® probabilistic analysis software

- Model inputs can be defined as random variables and described by a probability density function
- Probabilistic methods are used to propagate uncertainties through the models and compute variancebased sensitivities
- Estimate the contribution from aleatory (inherent variations) and epistemic (knowledge-based) uncertainty

Sensitivities are dependent on...

- Strength of the correlation between the input parameter and the response
- Range of variation for the random variable in the analysis

Sensitivity analysis objectives

- Elucidate relationship between mesoscale architecture and macroscale pi-joint response
- Identifying steps to reduce uncertainty in model predictions and mature the P2P framework

Characterization and Uncertainty Quantification

Mesoscale Textile Model⁴

Macroscale Pi-joint Model⁵

Constituent Material Property	COV (%)	Number of Measurements (<i>N</i>)	Characterization Method	Layup	Pi-joint Model Parameter Description	Parameter	Approx. COV (%)	Uncertainty Quantification	
Matrix Tensile Modulus (<i>E_m</i>)	5.98	12	ASTM D638	N/A	Pi-joint Geometry				
					Base Thickness	tb	3	calibration	
Matrix Poisson's Ratio	1.66	4	ASTM D638	N/A	Base Taper Thickness	tb taper	5	conservative assumption	
					Full Base Width, including taper	wb taper	5	calibration	
					Leg Thickness	tl	3	calibration	
Tensile Modulus (E _{1 tow})	2.17	8	ASTM D3039	[0] ₈	Leg Taper Thickness	tl_taper	5	conservative assumption	
					Leg Width, including taper	wl taper	4	calibration	
Tow Transverse					Unitape Skin Ply Thickness	tply uni	3.75	calibration	
Tensile Modulus	3.16	5	ASTM D3039	[90] ₁₆	Fabric Web Ply Thickness	tply fab	5	calibration	
(E _{2,tow})					Unitape and Fabric Mechanical Properties				
Tow XY Shear Modulus (G _{12,tow})	3.80	4	non-standard PTS15	[0] ₄₈	Unitape Skin Shear Modulus G23	<u>G23_u</u>	10	conservative assumption	
					Quasi-isotropic Unitape Mod. E11 Tension	Ell tqu	10	calibration	
Tow XZ Shear Modulus	1.49	6	modified ASTM D2344	[0] ₄₈	Quasi-Isotropic Fabric Mod. E11 Tension	Ell tqf	10	conservative assumption	
					Adhesive Cohesive Zone Law				
(~13, <i>t0w</i>)					Normal Strength, Mode I	S n	20	calibration	
Tow YZ Shear Modulus (G _{23,tow})	2.30	4	non-standard PTS15	[0] ₄₈	Shear Strength, Mode II	<u> </u>	20	calibration	
					Mode I Strain Energy Release Rate	G n	20	calibration	
Tow XY Poisson's Ratio (ν _{12.tow})	8.45	3	ASTM D3039	[0] ₈	Mode II Strain Energy Release Rate	G s	20	calibration	
					Mixed-mode Exponent	BK	10	calibration	
Warp Tow Fiber					Compliance Constant, Mode I	alpha n	20	calibration	
Volume Fraction	6.17	8	optical microscopy	N/A	Compliance Constant, Mode II	alpha_s	20	calibration	
(V _{f,warp})					sta	ndard da	miation		
Fill Tow Fiber Volume		10			$COV = \frac{3ta}{2}$				
Fraction (V _{f,fill})	5.14	10	optical microscopy	N/A	mean				
CONCERNEGEARCH LABORAGE	irby et al. AIAA SciT	ech, 2022. [5] Kirby et a	al. AIAA SciTech, 2023.		Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2303 Cleared: 5/12/2023)				
	SERIE UTARIA ARABIER UNIVERSITE DI CARA ARABIER DI CARA ARABIE						KHEED MARTIN 11		

Maximum Load Response

- Max load is primarily governed by failure of the adhesive but also influenced by geometry
- Most sensitive to the Mode I cohesive zone strength \rightarrow unexpected for a bending test
- Of constituent properties, only sensitive to $V_{f,warp}$
 - E_1 in the leg is most sensitive to uncertainty in $V_{f,warp}^4$
 - Beam theory \rightarrow bending stress is a function of E_1 in the leg

Stiffness Response

Stiffness is sensitive to pi-joint geometry, not adhesive failure

0.50

0.45

0.40

0.35

0.30

Lateral Bend

LITAR

UNIVERSITY OF TEXAS AT ARLINGTON RESEARCH INSTITUTE

Bending stiffness directly related to fabric web thickness and E₁ in leg

(DAYTON

RESEARCH

13

Stiffness Main Effects

Stiffness Total Effects

Lateral Bend

- LB-1 ____ LB-2 - LB-3

1.0

Normalized Force

CONVERGENT

Maximum Stress Response

- Max stress in the pipreform during LB is in the radius btwn base and leg
- Max stress is primarily sensitive to constituent properties $(V_{f,warp})$ and is also influenced by geometry
- Should pursue efforts to reduce uncertainty in V_{f,warp} and tb
- Interaction btwn pipreform fracture and adhesive failure is not captured in model

Cumulative Distribution Function Analysis

- Can use model for max stress or max load to compare to experimental data \rightarrow reliability analysis
 - Could compute the probability that the max stress exceeds the strength
 - Could estimate probability of pi-preform fracture vs. failure in the adhesive for pristine pi-joints
- Limited data for leg strength (5 tests) is a significant source of uncertainty \rightarrow recommend additional tests to reduce uncertainty
- uncertainty using mesoscale model compare to measured uncertainty?

Maximum Stress vs. Leg Strength (S11)

Summary and Next Steps

- Developing a multiscale 3D textile pi-joint model to aid in design and analysis of textile architectures and investigate their impact on component performance
- Sensitivities provide an understanding of the impact of uncertainty at the constituent level on uncertainty in the predicted pi-joint response
- Limitation of the parametric pi-joint model = damage only modeled in the adhesive \rightarrow global force-displacement response does not show sensitivity to constituent properties other than V_{f,warp}
- Future work:
 - Use separate textile models for base, leg, and transition region
 - Compare and contrast different fiber weave architectures and constituent materials (different fiber and resin)
 - Look at additional loading cases \rightarrow only looked at lateral bend so far
 - Further investigation of uncertainty in fiber volume fraction \rightarrow all responses sensitive to $V_{f,warp}$
- The homogenized model approach is only one piece of the larger P2P framework that is being developed under OPPERA

