Probabilistic Sensitivity Studies of Composite Damage Models

ICCM 23

International Conference on Composite Materials

Belfast 30 July – 4 August 2023

David Riha, Matthew Kirby, and Marcus Stanfield

Southwest Research Institute

Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

- I. Background: Process-to-Performance Composites Modeling Framework
- II. Model Verification and Validation (V&V) and Uncertainty Quantification (UQ)
- III. Open-Hole Tension Study Objectives and Model Development
- **IV.** Probabilistic Analysis Approach
 - 1. Random Variables
 - 2. Response Surface Modeling
- V. Probabilistic Analysis Results and Discussion
- VI. Summary and Conclusions

Background and Motivation

- Bonded composite primary structures for advanced aircraft systems
 - Advantages: (1) reduced weight, (2) reduced part count, and (3) improved performance
 - Challenges: (1) limited software tools for design and analysis, (2) impact of uncertainties and manufacturing defects not well understood², and (3) fasteners used because bond is not trusted
- OPPERA Program: OMC (Organic Matrix Composite) Processto-Performance Evaluation, Research, and Analysis
 - ► Program objective: Develop validated process-to-performance (P2P) methods to predict static response and fatigue life of bonded composite structures → reduce cost and schedule impacts during certification
 - Demonstration article: bonded composite pi-preform joint
 - Study objective: develop engineering tool for assessing structural response of bonded composite pi-joints under uncertainty

Research question: Identify opportunities to mature probabilistic approaches in the P2P framework

Pi-joint Demonstration Article¹

[2] Omairey et al., SN Applied Sciences, 2021

Overview of OPPERA P2P Framework

- ► Multiscale framework for process-to-performance (P2P) modeling → mesoscale fiber architecture to macroscale component response
- ► Flexible → multiple paths through the framework to capture various phenomena and allow for flexibility in solution fidelity

Predictive Capability

- 1. Fiber bed compaction and relaxation
- 2. Material properties, residual stresses, and porosity evolution during cure
- 3. Damage evolution at mesoscale and macroscale
- 4. Final part capability

Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

Verification and Validation (V&V)

- Systematic approach for identifying important phenomena, approximations, and uncertainties
- Guides resource allocation for gathering experimental data to reduce uncertainty (e.g. sensitivity analysis)
- Formal documentation of assumptions, limitations, and justification of results with supporting data
- Some key elements of V&V approach:
 - Phenomena importance and ranking table (PIRT): used to understand key phenomena and capabilities for modeling the phenomena
 - Tool maturity level (TML): formal assessment of the predictive capability of the model

UQ and Sensitivity Analysis

NESSUS[®] 10.0 probabilistic analysis software

- Model inputs can be defined as random variables and described by a probability density function
- Probabilistic methods are used to propagate uncertainties through models and compute variance-based sensitivities
- Estimate the contribution from aleatory (inherent variations) and epistemic (knowledge-based) uncertainty
- Sensitivities are dependent on...
 - Strength of the correlation between the input parameter and the response
 - Range of variation for the random variable in the analysis
- Supports identifying steps that could be taken to reduce uncertainty in model predictions and mature models/framework

Renarce REDEARCH LABORNOF

Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

Open-Hole Tension Study Objectives

- Investigate the relationship between uncertainty in mechanical and fracture properties and variability in the maximum load for different layup configurations
- Identify potential opportunities for reducing uncertainty in the model prediction
- Guide resource allocation for further data collection
- Mature probabilistic modeling in the P2P framework

Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

Parametric Open-Hole Tension Model

Geometry:

- ASTM D5766 \rightarrow L = 6", W = 1.5", and \emptyset = 0.25"
- Minimum element size near the hole = 1.81 mils (0.046 mm)
- 8-ply quasi-isotropic layups (7.2 mils thick/ply)
 - [45/<mark>0</mark>/-45/90]_s 1.
 - LaRC04 initiated MIC failure
 - 2. [<mark>0/45/90/-45]</mark>s **CFV** fiber failure 3. [90/-45/<mark>0</mark>/45]。

Material:

- 8552-1/IM7 unitape ply-level orthotropic properties (homogenized each ply \rightarrow not explicitly modeling fiber architecture)
- BSAM material 105 to capture nonlinear shear stress-strain

Damage Modeling:

- BSAM crack type 101 for matrix cracking
- Matrix crack initiation according to LaRC04 criterion
- Interface between plies modeled by Turon-Camanho cohesive zone
- Critical failure volume (CFV) for fiber failure

Open-Hole Tension Maximum Load

- Maximum load = the maximum load at (or prior to) CFV failure
- ► CFV failure is predicted when the average failure load factor (AFLF) goes below 1 for any 0° ply → scaling factor based on current strength vs. applied load

Summary of Open-Hole Tension PIRT

OHT BSAM Model Variable	Nominal Value	Units	Sensitivity Study Distribution	Distribution Parameters	Relative Importance of Variation	Confidence	OHT BSAM Model Variable	Nominal Value	Units	Sensitivity Study Distribution	Distribution Parameters	Relative Importance of Variation	Confidence
MATERIAL SYSTEM: 8552/IM7 UNIDIRECTIONAL TAPE							MATERIAL SYSTEM: 8552/IM7 UNIDIRECTIONAL TAPE						
Material Orthotropic Constitutive Model							Cohesive Zone Properties (Bi-linear)						
Elastic modulus longitudinal tension (E_{11})	162	GPa	Normal	$\mu = 162, \\ \sigma = 3.59$	Medium	High	Mode I interlaminar energy release rate (G_n)	0.331	mm·N/mm ²	Normal	$\mu = 0.331,$ $\sigma = 0.0170$	Medium	Medium
Elastic modulus transverse tension (E_{22})	8.95	GPa	Normal	$\mu = 8.95, \\ \sigma = 0.293$	Medium	High	Mode II interlaminar energy release rate (G_s)	0.677	mm·N/mm ²	Normal	$\mu = 0.677,$ $\sigma = 0.0122$	High	Medium
Poisson's ratio in-plane (v_{12})	0.316		Normal	$\mu = 0.3156, \\ \sigma = 0.0167$	Medium	High	Mode II intralaminar energy release rate $(G_{s,intra})$	1.28	mm·N/mm ²	Normal (CV = 5.14%)	$\mu = 1.28,$ $\sigma = 0.0657$	High	Low
Shear stress-strain curve in-plane (τ_{12})	83.4	MPa	Normal (delta vector scaling)	$\mu = 83.4, \ \sigma = 1.33$	High	High	Mixed mode exponent, Mode I and	2.2		Shifted	$\mu = 1.104,$ $\sigma = 0.3815$	Uigh	Madium
Strength Properties							Mode II interlaminar (η)	2.2	ľ	(-1)	$(\lambda = 0.0425, \zeta = 0.3359)$	mgn	wieurum
Normal strength longitudinal tension (S_{11})	2559	MPa	Normal	$\begin{array}{l} \mu = 2559, \\ \sigma = 102 \end{array}$	High	High	Critical Failure Volume (CFV)						
Normal strength transverse tension (S_{22})	64.0	MPa	Normal	$\mu = 64.0, \\ \sigma = 5.91$	Medium	Low	Weibull modulus, shape parameter ($lpha$)	41.0		Lognormal	$\mu = 41.3342, \\ \sigma = 5.5622 \\ (\lambda = 3.7127, \\ \zeta = 0.1340)$	High	Medium
Shear strength in-plane offset $(S\tau_{12,offset})$	0.8		Uniform	a = 0.65, b = 0.95	Medium	Low							

UNIVERSITY OF TEXAS AT ARLINGTON RESEARCH INSTITUTE

Random Variables

- Ranked variables based on team's experience with quasi-isotropic OHT coupon testing
 - Relative importance of uncertainty and variation in the parameter
 - Confidence in the models and data
- 12 random variables in the probabilistic studies:

Response Surface Modeling Approach

Epistemic Sensitivity Factors

Maximum Load (Epistemic)

Aleatory Sensitivity Factors

Maximum Load (Aleatory)

- Differences between layups strongly influenced by position of 0° plies
- <u>Layup 2</u> is more sensitive to shear than other layups because 0° plies are on boundary (less constraint on matrix cracking)
- Layups 1 and 3:
 - O° plies positioned between two 45° plies → limit shear cracking initiation and propagation

Sensitivity Index

- Exhibit similar sensitivity results, but...
- Differ slightly in sensitivity to intralaminar Mode II fracture and the shear strength offset parameter
- Layup 1 may be more susceptible to matrix cracking (and subsequently delamination) than Layup 3

Distribution A. Approved for Public Release: Unlimited Distribution (AFRL-2023-2442 Cleared: 5/18/2023)

Max Load Cumulative Distribution Functions

- Range of the nominal prediction represents the aleatory uncertainty
- Layup 2 exhibits the most aleatory uncertainty related to uncertainty in $S_{\tau_{12,offset}} \rightarrow$ investigate in future work
- Significant difference in max load response between Layup 1 and 3
- Confidence bounds represent the epistemic uncertainty
- Substantial epistemic uncertainty primarily caused by uncertainty in α → additional testing could reduce epistemic uncertainty

Summary and Conclusions

- The response of each layup is strongly influenced by position of 0° plies
 - Layup 2 was more sensitivity to shear \rightarrow need to characterize shear strength offset
 - Layups 1 and 3 were primarily sensitive to longitudinal tensile strength
 - Significant difference between max load response of Layup 1 and 3 requires additional investigation
- Commonality among all 3 layups = sensitive to epistemic uncertainty in CFV parameter
 - Collecting more data could reduce uncertainty
 - However, this parameter is very hard to measure \rightarrow consider calibrating directly from open-hole tension experiments
- These types of probabilistic studies can help
 - Identify opportunities for more efficient calibration of progressive damage models
 - Support the development of novel tests or stacking sequences to isolate phenomena
- **Current efforts include:**
 - **Developing framework for** rapid calibration of progressive damage models for new materials to augment certification testing
 - Multi-scale models of OHT/OHC of 3D textiles.

Backup Slides

BSAM Nominal Simulation Results

- Results shown at the maximum load
- Matrix cracks run parallel to ply orientation
- Delamination pattern is more difficult to discern
- In general, more matrix damage appears to have occurred prior to the maximum load than interlaminar damage
- Delamination appears to initiate at free surfaces

