

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Die Ressourcenuniversität. Seit 1765.

BIOBASED GLASS FIBER SIZINGS FOR DEGRADABLE COMPOSITES IN MEDICAL AND TECHNICAL APPLICATIONS

ICCM23, Belfast, 30.07.-04.08.2023

Rudi Reichenbächer^{1*}, C. Elschner¹, J. Grottendieck², M. Groß², C. Scheffler¹, M. Stommel^{1,3}

¹ Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Dresden, Germany

² Institute of Glass and Glass Technology, TU Bergakademie Freiberg, Akademiestraße 6, Freiberg, Germany

³ Technische Universität Dresden, Institute of Materials Science, Dresden, Germany

Biomaterials and Biocomposites

- <u>Biomaterials</u>: Ceramics, Polymers and Glasses
- <u>Foundation for novel biocomposites</u>: bioactive glasses
 - \rightarrow osteoinductive, osteoconductive
- → Our aim: novel biodegradable load-bearing composite materials

(1) www.medeco-ch.com, BonAlive®

(2) Plyusnin, A. et al. ESB2019, 9-13 Sept 2019, Dresden, Germany

Novel Biocomposite Materials - Sizing

Sizing the property-decisive interface

- Biobased + degradable
- Increase tensile strength
 Protection of the fiber
 Fiber-matrix-adhesion

My aim: development and analysis of a suitable biodegradable and biobased sizing for degradable glass fibers

3

Representation of the fiber-matrix-interphase according to Petersen. Technical University of Denmark 2017, PhD thesis

Materials – Glasses and Sizing Components

Glasses				Sizing: Water based
parts	E-Glass M%	45S5 M%	18-06 M%	Bio based film formers
SiO ₂	53	45	65	4 6 Chitosan
Al ₂ O ₃	15	-	-	
P ₂ O ₅	-	6	0	
B ₂ O ₃	5	-	1,5	
Na ₂ O	-	24	18,4	
K ₂ O	-	-	-	
CaO	19	24	15,0	
MgO	4	-	0,1	N-(2-Aminoethyl)-3-APTMS - <u>Diaminosilane</u>
Spinning trials Dip coating trials			iting trials	(CH ₃ -O) ₃ -Si <u>NH</u> ₂

4

(1) Marks et al., ISSN 0025-5866

(2) Mekonnen, T. et al., J. Mater. Chem. A, 2013, 1, 13379

Workflow – Fiber Processing and Investigation

5

Results – Thermal Properties and Sizing Content

- Homogeneous film forming observed
- Thermal stability over 200°C for all film formers
- Sizing content was determined gravimetrically

Results – Sizing Characterization - SEM/EDX

Results – Single Fiber Tensile Tests

Objective: increase of single fiber tensile strength through the sizing

Weibull-distribution:

- 50 samples measured
- Probability of failure (P) is assigned to every fracture strength (σ)

$$P = 1 - e^{-\left(\frac{\sigma}{\sigma_0}\right)^m}$$

- Weibull modulus m
 - = homogeneity of distribution of flaws in the glass fibre network
- Weibull characteristic strength σ₀
 - = 63,2% of fibres break at this value

9

Results – Single Fiber Tensile Tests

Objective: increase of single fiber tensile strength through the sizing

10

Weibull characteristic strength: A statistical strength value with a probability of failure at 63.2 % of the fibres

Results – Roving Tensile Tests on E-Glass

Objectives: filament-to-filament adhesion, transmission of force

- Two effects strengthen the yarn:
 → On fiber scale:
 healing of defects by silane
 → On yarn scale:
 - filament-to-filament adhesion by <u>film formers</u>
- → Good filament-to-filament adhesion on the yarn with bio based film formers

- + yarn closure no splicing
- processability easy to pull from the spool

Results – Composite Manufacturing and Tensile Testing

<u>Objectives</u>: filament-to-matrix adhesion, protection of the fiber through sizing, yarn closure/processability

Summary and Outlook

- Improvements in tensile strength, fiber matrix adhesion and processability
- Simple and biobased sizing formula
- → Publication in progress including spinning of bioactive glass fibres

Next steps:

- Optimize sizing (further film formers, tailor amount of all components) and spool geometry for better processability
- Go into application (medical or technical)

Thank you!

Contact

Rudi Reichenbächer, M. Sc. Leibniz-Institut für Polymerforschung Dresden e. V. Research groups: Bio-Engineering and Fiber-Engineering Phone: +49 351 4658 354 E-Mail: reichenbaecher@ipfdd.de Web: www.ipfdd.de

