Effect of architecture on the mechanical properties of self-reinforced composites

R. N. Yogeshvaran¹, F. Farukh¹ and K. Kandan¹

¹School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK

Outline

- Manufacturing of commingled yarn based woven and knitted self-reinforced Polymer(srP) composites
- Optical microscopic image of srP composites
- Tensile response of srP composites
- Flexural strength of srP composites
- Comparison of srP composites with prosthetic socket material.
- Summary

Introduction

- The multitude of Self-reinforced polymers(srP) material's high mechanical properties and processibility embodies in different application like automotive, aerospace and construction industries.
- The commingled thermoplastic polymers enables manufacturing of composites at very short cycle times
- <u>Prosthetic socket</u>- An integral link which connects amputees residual limb to the rest of the prosthesis.
- Common materials: CFRP, GRRP, High-density polyethylene, polypropylene etc.

Objective:

- To perform mechanical characterization of the self-reinforced polyethylene terephthalate (srPET) and self-reinforced polylactic acid (srPLA) based thermoplastic composites.
- This commingled yarn based srPET and srPLA were examined in woven and architectural knitted preform to used as a candid material for socket manufacturing.

Manufacturing of srP Composite

- The fibre volume fraction of srPET is 49% and srPLA is 50%.
- Six layers of woven Twill 2/2 srP fabric were used to fabricate the laminate using vacuum-assisted consolidation.
- The low-temperature matrix fibre made to melt to act as a binder for the reinforcing fibres.
- 85% vacuum were maintained whilst heating at the rate of $5^{\circ}C/min$ until the consolidation temperature.

Laminate and optical Microscopy of srP woven composite

100µm

(a) The woven fabric and cured laminate of

srPET **srPLA**

- The matrix is perfectly melted and encapsulated the ٠ reinforcing fibers in both srPET and srPLA laminates.
- No voids demonstrating the successful use of the ٠ thermal vacuum consolidation process of laminates

(b) The microscopic image of

srPLA Width of the yarn track Width of the yarn track 200µm

Architectural preforms of the srP composites

- The commingled thermoplastic yarn were weft-knitted with varying loop density.
- The architectural fabric of 400mm * 400mm were made using automated knitting machine.
- The similar vacuum-assisted consolidation were equipped for manufacturing PLA-K and PET-K laminate.

																		_		_		_		_		_		_		-		-		-	_	_	_	_	_	_	_	_	_	_		_	-
)() ()() () () () () () () ()		$\Big)$))))() () (_					1	_)	
)-()7()-{) ()-{)-()-()-()7()-() ()-()-()-()-1)-	P	9-	p	9-	P	9-	P	9-	P	9-1)-()-{	0	1-6	0)-{)-{	_/)-{		1-6	_)	-6
)-()-()-()-()-{)-()-()-()-()-()-()-()-()-()-()-()-()-()-1	5)-	p	9-	p	9-	p	9-	P	9-	p	9-1	57)-()-()-{		I-P)-{)-{)-{		1-P	7	-[]
-)-1	}-{)-()-()-()-()-()-()-()-()-()-()-()-()-()-)-()-()-1		51	ĉ	ŗ	ħ	6-	ſ	6-	ſ	6-	\int	9-1	Н)-()-()-{	-6)-{)	-6)-{	-(-)-{	-(: /)-{	-(: 	$ - ^{\circ}$	-6	$-{}^{\mathcal{Y}}$
)-1	5-1)-()-()-()-()-()-()-()-()-()-()-()-()-()-1)-()[þ	9-	P	9-	p	9-	-	9-	ſ	6-	þ	9-1	51)-()-()-{	r(;)-{))-{)-()-{	r()-{	r(1-6	-6	-6
H)-	Н)-()-()-()-()-()-()-()-()-()-()-(-	Żľ	7	Н)	\int	9-	ſ	9-	ſ	9-	ſ	9-	ſ	9-	ſ	9-1	$\left \right $)-()-()-(H(;)-{	H(; /)-()-()-{)-(. ,)-(-(. /)-{	-)	-()
-	6-1	5)-(-1)-()-()-()-()-(}-1)-()-()-()-()-1	5-1)-1	¥	j	þ	6_	þ	6_	h	6.	1	6.	þ	6-	f	6-	h)-()-()-{	r()-f	r()-{)-()-{)-()-{	r-(:)-{	-6	-P
-	6-1	Н)-()-{)-()-()-()-()-()-)-()-()-()-()-1	$\left \right $)-1)-)-	f	9-	ſ	6-	ſ	6.	ſ	6-	ſ	6-	ſ	6-	H)-()-()-(H(;)-{	H(;)-()-()-{)-()-(-(-)-{	76	+
5	6-	þ)-(51)-()-()-()-()-(5-1)-()-1)-()-1)-1	5	9-1	5)-	þ	9-	ſ	6-	P	6.	P	6.	ſ	6-	ſ	9-	p)-()-()-(5)-{)-()-()-()-()-()-f	76	$ - ^{\gamma}$
)-	6-	β)-(Н)-()-()-()-()-1)-)-()H)-()-)-1	\mathcal{F}	9-1)-)-	ſ	9-	ſ	6-	ſ	6.	ſ	6.	ſ	6-	ſ	6-	ſ)-1)-()-(H(•)-{	-(-)-()-()-()-()-()-()-{	-6)-{)
)-	9-	þ	9-1	5-1	9-1)-()-()-1)-1	5	9-1	5-1)-1	5-1)-1	þ	9-1	h	9-	þ	6-	ſ	6.	ſ	6.	ſ	6.	ſ	6-	ſ	6-	þ	9-1)-()-()-()-{)-()-()-()-()-()-()-()-{	rt J)-{)
}-	6-	β	9-1	Н)-()-()-()H)-1	}-)-1)-I)-1)-)-	h	9-1		9-	ſ	9-	ſ	6.	ſ	6.	ſ	6.	ſ	6-	ſ	9-	ſ	9-1)-()-()-()-()-()-()-()-()-()-()-()-{	-6)-{
}-	6-	þ	6-1	P	9-1)-1)-()-1	9-1	h	9-1	5	9-1	5	9-	þ	6-1	h	6-	þ	6-	ſ	6.	ſ	6.	ſ	6	ſ	6	p	6-	p	9-1)-()-()-()-()-()-()-()-()-()-()-()-{	56)-{)
}	6-	þ	6-1	þ	9-1	5-1)-1	5-1	6-1	h	6-1	h	9-1	h	9-	þ	6-	þ	9-	þ	6.	þ	6.	P	6.	-6-	6	-6-	6.	ŗ	6-	þ	9-	5-1)-()-()-()-()-()-()-()-()-()-()-{	56)-{
}	9-	þ	9-1	þ	9-1	51)-1	5-1	9-1	h	9-1	h	9-1	h	9-	þ	9-	þ	9-	þ	6.	ſ	6.	ſ	6.	ſ	6	ſ	6	ſ	6-	ſ	9-	51)-()-()-()-()-{)-()-()-()-()-()-(56)-{
}-	9-	f	9-	ſ	9-1	Н)-1	}-	6-	f	6-1	h	9-1	h	6-	ſ	9-	ſ	9-	ſ	6.	ſ	6	ſ	6	$-\beta$	6	-{	6.	ſ	9-	ſ	9-	Н)-()-()-()-()-()-()-()-()-()-()-()-()-{
5	9-	p	9-	p	9-1	5)-1	5	9-	p	9-	r	9-	p	9-	f	9-	þ	9-	ſ	6.	ſ	6	ſ	6	-0-	6	-0-	6.	ſ	6-	ſ	9-	51)-()-()-()-()-(51)-()-()-()-()-()-(\)-{
)- 	9-	ſ	6-	f	6-1	Н)-1	$\left \right $	6-	ſ	9-	ſ	9-	ſ	9-	ſ	9-	ſ	9-	ſ	6	ſ	9	ſ	5	-{	6	-{	6	ſ	6-	ſ	9-	Н)-()-()-()-()-(Н)-(Н)-()-()-()-(\)-(

srF	PLA	srPET						
Case	Loop density $(\frac{loops}{cm^2})$	Case	Loop density($(\frac{loops}{cm^2})$)					
A (high)	21 (tight)	D (high)	20 (tight)					
B (medium)	17 (medium)	E (medium)	16 (medium)					
C (low)	13 (loose)	F (low)	9 (loose)					

Tensile and flexural tests of srP composites

(a) Dog bone specime as per ASTM D638

(b)Flexural three-pont bending as per ASTM 3039

- The fabricated woven and knitted laminates were examined in both the direction.
- Tensile and flexural tests were performed at the rate of 1mm/min.

Tensile response of srPLA laminate

80

Table: The measured tensile properties of srPLA composite

Parameters	Ultimate strength (MPa)	Failure strain (%)	Elastic modulus (GPa)
PLAW-Warp	42±0.5	1.6	3.7±0.03
PLAW-Weft	41±2	1.8	3.85±0.25
PLA-high S.D(tight)*	36.65±0.73	0.014±0.0005	2.88±0.008
PLA-high S.D	33.94±1.95	0.014±0.0011	2.7±0.098
PLA-medium S.D*	34.85±0.73	0.0134±0.0005	2.97±0.09
PLA-medium S.D	31.82±1.06	0.0114±0.0005	2.96±0.12
PLA- low S.D(loose)*	26.44±1.38	0.007±0.0005	3.66±0.075
PLA-low S.D	23.90±3.34	0.008±0.0016	3.2±0.042

*- Wale direction; S.D- Stitch density

Tensile response of srPET laminate

Table : The measured tensile properties of srPET composite

Parameters	Ultimate strength (MPa)	Failure strain (%)	Elastic modulus (GPa)
PETW-Warp	127±4	19	4.45±0.25
PETW-Weft	132±5	19	4.35±0.05
PET-high S.D(tight)*	35.99±0.57	0.19±0.018	1.05±0.09
PET-high S.D	17±0.54	0.17±0.03	0.62±0.04
PET- medium S.D*	39.05±2.6	0.15±0.014	1.28±0.0.05
PET-medium S.D	13.02±0.73	0.11±0.015	0.338±0.02
PET-low S.D(loose)*	85.11±5.24	0.197±0.02	2.41±0.06
PET-low S.D	26.61±0.53	0.103±0.011	1.307±0.135

*- Wale direction; S.D- Stitch density

Flexural strength of woven and knitted srP composite

Comparison of tensile and flexural strength with the prosthetic socket materials

- 1. Phillips SL, Craelius W. Material properties of selected prosthetic laminates. LWW; 2005;17:27–32.
- 2. Campbell AI, Sexton S, Schaschke CJ, Kinsman H, McLaughlin B, Boyle M. Prosthetic limb sockets from plant-based composite materials. SAGE Publications Sage UK: London, England; 2012;36:181–9.
- 3. Odusote JK, Oyewo AT, Adebisi JA, Akande KA. Mechanical properties of banana pseudo stem fibre reinforced epoxy composite as a replacement for transtibial prosthetic socket. Association of Professional Engineers of Trinidad and Tobago; 2016

Summary

- In woven laminates
 - The Vacuum- assisted thermal curing of commingled yarn shows the matrix are well encapsulated with the fibres with less voids.
 - Tensile and flexural response of both srPLA and srPET provides relatively consistent properties in both the weft and warp directions.
- In knitted laminates
 - The properties of the knitted composite laminates were greatly influenced by the stitch density.
 - The srPET shows the anisotropic behaviour in material properties in which the ultimate tensile and flexural strength predominantly increases by decreasing the stitch density and increasing the loop length.
 - In case of srPLA, the properties exhibits the inverse effect by demonstrating minimal difference between the wale and course direction.
- The mechanical response of these srPET and srPLA offers good strength and ease of manufacturing with minimal time compared to standard resin infusion composite fabrication protocol.
- Employing automated 3-dimensional knitting technique to create the near-shape of the amputee's residual limb could emphasize realistic potential for producing customized patient specific sockets.