

BICOMPONENT PP FIBERS FOR SUSTAINABLE MINERAL BONDED STRAIN HARDENING COMPOSITES

ICCM23, 30 July – 4 August, 2023, Belfast, Ireland

Mihaela-Monica Popa¹, Mirza Abdul Basit Beigh², Cesare Signorini², Viktor Mechtcherine², Christina Scheffler¹

¹ Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Dresden, Germany
² Technische Universität Dresden, Institute of Construction Materials, Dresden, Germany

Motivation

2

 existing reinforced concrete structures reveal low resistance to impact loading, such as shock, collision, or explosion

[1] Kim, K., & Lee, J. (2020). Fragility of bridge columns under vehicle impact using risk analysis. Advances in Civil Engineering, 2020, 1-14.

[2] https://www.nbmcw.com/article-report/infrastructure-construction/transportation-metrorail-airways-waterways/effects-of-blast-loading-on- engineering-structures-an-overview.html

Research Target

- application of thin layers of strengthening material using innovative, mineral-bonded composites
- economically and ecologically approach

Research Training Group

Mineral-bonded composites for enhanced structural impact safety

https://www.grk2250.de/

State of the art

4

- strain-hardening concrete composites = polymer fibers (2 vol.-%) + concrete matrix
- fiber diameter 10-20 μm, widely used PVA, HDPE, PP

ipf

Approach

Fundamental research on tailored fibers

5

Wölfel, E., Brünig, H., Curosu, I., Mechtcherine, V., & Scheffler, C. (2021). Dynamic single-fiber pull-out of polypropylene fibers produced with different mechanical and surface properties for concrete reinforcement. Materials, 14(4), 722.

Approach

- Aim: Improvement of mechanical interlocking combined with high tensile strength
- \rightarrow Development of bicomponent PP-fibers with increased surface roughness

Experimental plan

- core/shell ratio 75/25
- incorporating CaCO₃-particle content
- dies size 0.3 x 0.6 mm
- *w* = 2400 m/min
- drawing ratio DR=3

Commercial PP-fiber $(mono), d = 19.8 \,\mu m$

PP + PP, d=27.61 μm

PP + 10 vol.% CaCO₃, d=28.37 µm

M1 matrix GRK2250/I

- basis model mix
- high strength matrix (Dr. Curosu I. 2016)

FRLC₃ +SAP matrix Superabsorbant polymer

- $\uparrow \text{porosity} \rightarrow$
 - \uparrow strain-hardening effect

Results – Fiber spinning trials

Analysis of surface morphology and roughness

Confocal Microscope (µSurf expert, Nanofocus AG)

 R_a = arithmetic mean deviation of the surface

Results – Fiber spinning trials

Analysis of mechanical properties

ip

Single fiber pull-out test (SFPO)

Curosu, I.; Mechtcherine, V.; Millon, O. Effect of Fiber Properties and Matrix Composition on the Tensile Behavior of Strain-Hardening Cement-Based Composites (SHCCs) Subject to Impact Loading. Cem. Concr. Res. 2016, 82, 23–35.

Results – Quasi-static single fiber pull-out test (Q-SFPO)

Results – Dynamic single fiber pull-out test (D-SFPO)

12

Results – Surface morphology after Q-SFPO

Results – Surface morphology after D-SFPO

Summary and Outlook

- enhanced energy absorption in FRLC3 matrix and after SAP addition using rough PP bicomponent fibers compared to 'smooth' monocomponent PP fiber in M1 matrix
- no fiber bridging improvement after SAP addition compared to FRLC₃ regime
- 'smooth' bicomponent PP fibers showed slight bridging improvement in FRLC3 matrix, even with SAP addition
- composites containing rough PP bicomponent fibers exhibit a propensity for strain-hardening behavior
- SAP utilization enhances the potential for stress transfer through multiple cracking
- rough fibers improve composite properties with less volume fraction

Thank you for your kind attention!

Deutsche Forschungsgemeinschaft (DFG—German Research Foundation) in the framework of the Research Training Group GRK framework 2250/2, project number 287321140

Contact

M.Sc. Mihaela-Monica Popa Leibniz-Institut für Polymerforschung Dresden e. V. Scientific Assistant

Work Group Fiber-Engineering

DEUTSCHE Forschungsgemeinschaft

