

Experimental and Numerical Investigation of Shape Memory Alloy Hybrid Composites with Elastomeric Interface

G. Pisaneschi^{1*}, T. M. Brugo¹, P. Cosseddu¹, G. Scalet², and A. Zucchelli¹

¹ Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy
 ² Department of Civil Engineering and Architecture (DICAr), University of Pavia, Italy
 * Corresponding author (gregorio.pisaneschi@unibo.it)

Paolo: the student

I want to use SMA to

create a mobile flap to increase the resistance

force in braking

Gregorio: the SMA PhD guy

It's a bad idea, the composite is too stiff, the interface will break, heating is a problem, cooling is a problem.. È un'idea fantastica! Let's do it! (you do it)

Andrea: the visionary Professor

Let's use an elastomeric interface, trust me, I did 1000 time, it will work

Giulia: the experienced in SMA FEM

Tommaso: the experienced in composite (Also the guy who make things work)

Povolo, M., Brugo, T. M., & Zucchelli, A. (2020). Numerical and Experimental Investigation of Al./CFRP Hybrid Tubes with Rubber-like Interlayer.

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

THE PROOF

- 0.5 SMA wire (As 95°)
- 3.5% prestrain
- 6 Ampere

WHY IT WORKED?

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

STATE OF THE ART

PAINE, JONES, & ROGERS, (1992) Nitinol actuator to host composite interfacial adhesion in adaptive hybrid composites.

Baz, Ro, (1992). Thermo-Dynamic Characteristics of Composite Beams

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

STATE OF THE ART

Yuan, Bai, Jia. (2016). Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method

Modifying method	Chemical etching [15]	Hand sanding [9]	Silane coupling agent [10]	Twisting method [13]
value	3%-18%	17%	91%	500%

Baitab,et al. (2020). Tensile behavior of multilayer 3D smart woven composites embedded with SMA wires.

ALMA MATER STUDIORUM Università di Bologna

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

STATE OF THE ART

Kelly and Tyson (1965)

- *l_c* : critical embedding
- σ_{ult} : fiber tensile strenght
- *r* : radius of the fiber
- τ_y : interfacial shear strenght

 Embedding length >> Critical length but the SMA doesn't brake

Mode I is predominant:
 The necking of the SMA wire cause debonding

The solution to SMA integration in composites is to eliminate **Mode I** But most of the work is to increase **interfacial shear strength**

- 1. Manufacturing
- 2. Testing
- 3. Characterization of the materials
- 4. Finite element analysis

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

1. MANUFACTURING

Specimen with or without elastomeric interface

- 0.2 mm SMA wire (Af -25°)
- 0.22 mm GFRP prepreg
- 0.5 mm KRAIBON
- Preliminary specimen
 L_embedded = [¼4" ½2" 1"]
- Final specimen
 - L_embedded = $\frac{1}{2}''$

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

2. TESTING - METHOD

Customised Pull-out tests of different embedded length specimen

ALMA MATER STUDIORUM Università di Bologna

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

2. TESTING - RESULTS

- + Initiation of Martensitic Phase Transformation (MPT) within the free wire
- × Completion of MPT within the free wire and initiation within the embedded
- + Initiation of debonding
- × Completion of debonding

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

2. TESTING - RESULTS

- + Initiation of Martensitic Phase Transformation (MPT) within the free wire
- × Completion of MPT within the free wire and initiation within the embedded
- + Initiation of debonding
- × Completion of debonding

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

3. CHARACTERIZATION

SMA wire tensile test (dotted line)

SMA FEM curve (red line)

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

NUMERICAL ANALYSIS - MODELING

3. 2D ax-sym FEM with CZMDOE: Optimization of parameters

NUMERICAL ANALYSIS – SHARED TOPOLOGY

	τ average (MPa)	δt (mm)	σ <i>average</i> (MPa)	δn (mm)	R (-)	α (-)
EP	18	0.04	9	0.04	0.1	1
KR	5.75	0.87	3.5	0.004	0.1	1

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

NUMERICAL ANALYSIS - DOE

	τ _{average} (MPa)	δ_t (mm)	G _t (MPa∙mm)	<i>σ_{average}</i> (MPa)	δ_n (mm)	G _n (MPa∙mm)	R (-)	α (-)
DOE 1	18.3 18 17.7	0.07 0.04 0.01	$\begin{array}{c} 0.6405\\ 0.63\\ 0.6195\\ 0.366\\ 0.36\\ 0.354\\ 0.0915\\ 0.09\\ 0.0885\end{array}$	8	0.012	0.048	0.13 0.1 0.07	1
DOE 2	35.4 23.6 17.7 14.16 11.8	$0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.02$	0.354	8	0.012	0.048	0.5 0.1 0.01	1
DOE 3	17.7	0.04	0.354	16 8 4	0.24 0.06 0.024 0.012 0.004	0.96 0.24 0.0964 0.024 0.016	0.1	1

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

GFRP SMA GFRP

NUMERICAL ANALYSIS - DOE

	(MPa)	(mm)	(MPa·mm)	(MPa)	(mm)	(MPa·mm)	R (-)	α (-)
DOE 1	7	1	3.5	7	0.01	0.035	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85	1
DOE 2	7 6 5 4 3 2	1	3.5 3 2.5 2 1.5 1 0.5	7	0.01	0.035	0.85	1

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

5

0

0

NUMERICAL ANALYSIS - RESULTS

2

Displacement (mm)

3

4

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

NUMERICAL ANALYSIS - RESULTS

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

NUMERICAL ANALYSIS - RESULTS

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

- The elastomeric interface can effectively be used to integrate SMA
- Other method all fail before or when the SMA MPT reach the matrix
- A method of optimization of CZM parameters have been tested

. . .

UPDATES

- Experiments with different embedding lengths
- Study of the effect of clamping in the SMA modelling
- Tensile traction/compression characterization of KRAIBON
- Study of the effect of the thermal effect
- Improved FEM modelling
- Improved DOE optimization method of CZM parameters

FUTURE WORKS

- Tailoring of the elastomeric interface
- Electrospinning of the elastomeric interface
- Thermo-Mechanical Characterization of SMA and KRAIBON
- Experiments/Numerical investigation with Shape Memory Effect
- Design of new SMAHC
- •

. . .

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface

Thanks to Gummiwerk KRAIBURG GmbH & Co. KG for generously donating the KRAIBON® used in this experiment;

Thanks to SAES® for sharing some information about SMA properties

And thanks to anyone who is interested in this work and who will share criticisms, comments and questions

Gregorio Pisaneschi - Experimental and Numerical Investigation of SMAHC with Elastomeric Interface