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Outline
• Overview of Tailored Universal Feedstock for Forming (TuFF)
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• Micromechanics
• High fidelity generalized method of cells (HFGMC)
• Carrera Unified Formulation (CUF)

• Simple single fiber Repeating Unit Cell (RUC) model

• Results

• Conclusion/Future Work
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Tailored Universal Feedstock for Forming (TuFF)

• Enabling Technology!
• Rapid  and advanced manufacturing 

• Stretch forming, stamping, tow 
steering, AFP

• Complex parts

• Recyclability (thermoplastic matrix)3

Discrete Long Fibers (Len./Dia ≥ 600

Highly Aligned

In-plane properties similar to continuous fiber composites

Formability

Yarlagadda, et al. (2019), SAMPE, Charlotte, NC; 
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Why Model TuFF?
• Composite behavior highly dependent on 

microstructure

• Virtual manufacturing, testing and progressive 
damage and failure analysis (PDFA)
• Rapid product development

• Improved material design

• Improved material performance

• Micromechanics and multiscale modeling is a 
useful tool
• Can relate microstructure to properties

• Can understand the local physics that drive the 
global phenomena

4Cender, et al. (2022). SAMPE 2022, Charlotte, NC
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Objective

• Evaluate micromechanics theories
• Potential for modeling multi-fiber representative volume elements (RVE)
• Nonlinear modeling – PDFA, process modeling
• Accuracy – must be able to capture shear lag effect
• Efficiency – RVE simulations will be large

• Preliminary work – study single fiber repeating unit cell (RUC)

• Two micromechanics theories considered here
• HFGMC – faster than traditional FEA

• Amenable to multiscale modeling

• CUF – based on arbitrary order beam theory
• Suitable for modeling discrete fibers explicitly
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HFGMC – Theory Overview
• Microstructure idealized with a discretized repeating unit 

cell (RUC)
• Microstructure and material behavior are arbitrary

• Subcell displacements are assumed quadratic

• Efficient semi-analytical solution
• Continuity of traction and displacements

• Enforced in an integral sense at subcell interfaces

• Strain concentration matrix maps global strains to local 
strains
• Piecewise linear, 3D local stresses and strains
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CUF – Theory Overview
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• Arbitrary choice for the type and order (number of terms) of the expansion

• Formulated as an invariant through Fundamental nuclei - same 
implementation for different classes of models

• Formulated within the context of finite element using standard shape 
function: 

𝑢 𝑥, 𝑦, 𝑧 = 𝐹𝜏 𝑥, 𝑧 𝑢(𝑦)CUF Kinematic field:
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RUC Model Details
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Aspect Ratio (Lf/Df) 600

Gap Ratio (Dg/Lf) 0.005 – 0.05

Fiber Volume Fraction (Ff) 0.58

• Periodic boundary conditions

• Uniaxial strain εx applied in the 
longitudinal direction

Runtimes (Single CPU on a Laptop)

HFGMC CUF

~ 12 mins ~ 6 mins



National Aeronautics and Space Administration

Stiffness as a Function of Gap Ratio 
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Poisson’s Ratio as a Function of Gap Ratio

10

x

x = 0

νxy



National Aeronautics and Space Administration

Shear Stiffness as a Function of Gap Ratio
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Average Stress in Fiber and Matrix
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Axial Stress Along Centerline
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Shear Stress Along Centerline
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Conclusion
• Single fiber RUC for a discrete long fiber composite modeled with 

HFGMC and CUF
• Length to diameter aspect ratio = 600

• Axial stiffness sensitive to gap size

• Calculation of average stress in fiber and matrix match well between 
models
• Local stress fields are complex

• Large gradients and stress spikes

• Discrepancy between models in shear stress along centerline
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Future Work
• Understand reason for discrepancy in shear stresses

• Develop strategy for modeling multiple fibers
• Computational requirements will pose a problem

• Incorporate damage model

• Incorporate rate dependent constitutive model to capture stretch 
forming at high temperatures

• Integrate multiscale model for semi-crystalline thermoplastic
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