The role of constituents on the compressive strength of composites

Soraia Pimenta

soraia.pimenta@imperial.ac.uk

M Patni, D Bikos, P Robinson, R Trask

The Composites Centre

for research, modelling, testing and training in advanced composites

Bristol Composites Institute

Introduction

Goals

- Enabling material development
- ➡ Increase accuracy of models
- Identify gaps in characterisation

Longitudinal compressive failure

- S Kink-band formation:
 - Fibre misalignments
 - Matrix shear response

Outline

- Properties of the matrix
 - Shear non-linearity
 - Plasticity parameters
- Properties of the fibres
 - Shear (& transverse) modulus
- Properties of interface
 - Matrix- vs. interface- dominated failure
 - Interfacial shear strength

Conclusions

Sequence of events (baseline constitutive law, $\hat{\theta}_0 = 1^\circ$)

Global stress-strain curve

Longitudinal compressive stress (MPa)

Matrix evolution at max. misalign.

Matrix equivalent shear stress (MPa)

Matrix equivalent shear strain (%)

Longitudinal fibre compression fields

Samultation Matrix non-linearity $(\hat{\theta}_0 = 1^\circ)$

Matrix shear constitutive law

Matrix shear stress (MPa)

Composite compressive strength

Composite strength (MPa)

Matrix plasticity: material parameters

Friction angle

Controls tension/compression/shear asymmetry

Matrix under complex 3D stress state

 $\sigma_{13}^{\rm m} - \sigma_{11}^{\rm m} - \sigma_{22}^{\rm m} - \sigma_{33}^{\rm m}$

Peak vonMises stress (MPa)

Dilation angle

Controls volumetric strains ("dilation") during plastic deformation

Fibres constrain matrix dilation during plasticity

Matrix stress (MPa)

Solution Matrix plasticity: friction angle, β^{m} ($\hat{\theta}_{0} = 2^{\circ}$)

Effect on composite strength

Composite strength (MPa)

Apparent constitutive law

Matrix von Mises stress (MPa)

Matrix plasticity: dilation angle, φ^{m} ($\hat{\theta}_{0} = 2^{\circ}$)

Effect on composite strength

Composite strength (MPa)

Hydrostatic pressure at peak

Matrix hydrostatic pressure (MPa)

Fibre elastic response (T300 carbon fibres)

Non-linear longitudinal response

Compressive stress (GPa)

Compressive strain (%)

Transversely isotropic (linear)

Baseline elastic constants: Csanádi et al. (2017)

$$E_{22}^{f} = E_{33}^{f} = 27.6 \text{ GPa}$$

 $G_{12}^{f} = G_{13}^{f} = 10.9 \text{ GPa}$
 $\nu^{f} = 0.3$

Effect on composite's shear modulus

Composite shear modulus (GPa)

Fibre shear and transverse moduli $(\hat{\theta}_0 = 1^\circ)$

Effect on composite strength

Composite strength (MPa)

Hydrostatic pressure at peak

Matrix hydrostatic pressure (MPa)

lnterface: modelling

Cohesive element modelling

Cohesive properties

- Same shear modulus & strength as matrix
- Fracture toughness: 2-10 J/m² (no influence), Zhou et al. (2018)
- Failure initiation & propagation: quadratic interaction

Interfacial shear strength

Experimental data for same composite

Pullout + Microbond * Fragmentation □ Indentation

➡ Huge experimental uncertainty!

Interface: effect on compressive response

With vs. without interface

Longitudinal compressive stress (MPa)

Effect on composite strength

Composite strength (vs. model without interface)

Call Interface: preventing plasticity on matrix

Fractography

Does interfacial failure really prevent plasticity in the matrix?

"Band of out-of-place microbucking" (Greenhalgh, 2009)

Equivalent plastic strains in matrix

➡ Without interface, peak stress (

♥ With interface, interfacial failure (④)

Conclusions

Matrix:

• Plasticity

Materials: confinement & strengthening

Characterisation: friction & dilation angles

• Shear non-linearity

Characterisation: include strain @ peak

Models: beware of LE-PP assumption & strain localisation

Fibres:

Materials: increase shear stiffness

Models: account for finite shear stiffness

Characterisation: shear modulus

➔ Interfaces:

Characterisation: IFSS (consistency) & complex 3D loading

Models: are CZM adequate?

"**Pure shear and compression-shear** characterisation of polymer matrix..." *Bohao Zhang* Wednesday 2nd, 3.20 pm

"Experimental characterisation of the **dilation angle** of polymers" *Gustavo Quino Quispe* Thursday 3rd, 10.00 am

https://nextcomp.ac.uk

I would like to acknowledge funding which supported this work from the UK Research and Innovation - EPSRC Programme Grant; Next Generation Fibre-Reinforced Composites: A Full Scale Redesign for Compression (EP/T011653/1)

A collaboration between Imperial College London and University of Bristol

Imperial College London

Bristol Composites Institute