

STRESS ANALYSIS AROUND AN OPEN HOLE OF CFRP MODIEFIED WITH GNPs

Stella Peloni^{1,2}, Nikolaos Koutroumanis¹, Panagiotis Nektarios Pappas¹, Nikolaos Kontis¹, Costas Galiotis^{1,2,*}

¹Institute of Chemical Engineering Sciences, Foundation of Research and Technology, Hellas, Platani St., Patras, Greece

²Department of Chemical Engineering, University of Patras, Patras, Greece

Conclusions

Outline

Carbon Fibre Reinforced Polymers (CFRPs)

Carbon nanofillers (CN)

Stress concentration properties of CN enhanced FRPs

Novelty – Scope

Techniques

Results

Carbon Fibre Reinforced Polymers (CFRPs)

PROS

- ✓ High strength-to-weight ratio
- ✓ Excellent fatigue properties
- Corrosion resistance
- Design flexibility

CONS

- Sensitive in adverse environmental conditions
- Low resistance to impact
- Delamination
- Susceptible to discontinuities/defects

Stress concentration regions in CFRPs

Carbon Fibre Reinforced Polymers (CFRPs)

<u>Delamination</u>: The layers of a composite material start to separate or peel apart.

<u>Fiber-matrix debonding</u>: Debonding between the fiber and matrix is weakened or lost.

<u>Cracks</u>: Small or large fractures in the composite material.

<u>Notches/Holes</u>: Occur due to manufacturing errors, voids in the material, or damage caused during handling or use.

Ref. Fabrizio Sarasini et al. "Quasi-Static and Low-Velocity Impact Behavior of Intraply Hybrid Flax/Basalt Composites"

Ref. Chan-Joo Lee et al. "Design of Hole-Clinching Process for Joining CFRP and Aluminum Alloy Sheet"

Ref. Christopher Baker *et al.* "Transverse cracking in carbon fiber reinforced polymer composites: Modal acoustic emission and peak frequency analysis"

Need for quantifying and reducing those regions

Minimizing their effect on the performance of the CFRPs

Carbon nanofillers (CN)

Type of Composite	Nanofiller	Weight fraction %	Investigated properties	Improvement %	References
CFRP	GNP	0.5	GI _C	61	Kostagiannopoulou et al. (2021), Engineering Fracture Mechanics
CFRP	GNP	0.5	GII _C	25	Kostagiannopoulou et al. (2021), Engineering Fracture Mechanics
CFRP	GNP	3	GI _C	60.4	Vijay K. Srivastava et al. (2017), Engineering Fracture Mechanics
CFRP	G0	0.5	GI _C	49	Kostagiannopoulou et al. (2015), Composites Science and Technology
GFRP	СNТ	0.1	Strength of an open hole composite	27	Pothnis J et al. (2021), Composites Part A: Applied Science and Manufacturing

- Investigation of the damage evolution of open hole GFRP utilizing <u>*DIC*</u> method
- In-situ direct non-contact measurement of displacements/strains-Non distractive technique

Novelty - Scope

Addition of GNPs in notched CFRPs \rightarrow Investigation of stress concentration around the circular notch via <u>Remote Raman technique</u>.

Validation of results • Numerically, Finite Element Analysis

• Analytically, Tan's FWC factor

7

Fabrication and map of the experimental/theoretical work

Raman Spectroscopy

1.0

1.2

Remote Raman Spectroscopy

Measurements for different applied strains

Finite Element Analysis

Axial stress for infinite plate

$$\sigma_{xx} (x = 0, y) = P + \left(\frac{\beta_1^2}{1 - \beta_1} \left[1 - \frac{\beta_1 y}{\sqrt{R^2 + \beta_1^2 (y^2 - R^2)}} \right] - \frac{\beta_2^2}{1 - \beta_2} \left[1 - \frac{\beta_2 y}{\sqrt{R^2 + \beta_2^2 (y^2 - R^2)}} \right] \right)$$
(1)
$$\theta_1, \theta_2 \text{ are related to elastic properties of the composite.}$$

$$\frac{K_T}{K_T^{\infty}} = \left\{ \frac{3\left(1 - \frac{2R}{w}\right)}{2 + \left(1 - \frac{2R}{w}\right)^3} + \frac{1}{2} \left(\frac{2R}{w}M\right)^6 (K_T^{\infty} - 3) \left[1 - \left(\frac{2R}{w}\right)^2\right] \right\}^{-1}$$
(2)

Axial stress for finite plate

$$\sigma_{xx,finite} (x = 0, y) = FWC^* \sigma_{xx} (x = 0, y)$$
 (3)

Neat Samples-Different Strain Levels

- Maximum stress is observed at the hole tip
- Max stress decays as the distance from the hole increases
- Stress reaches a plateau at distances greater than 1000 μm

Stress concentration factor K :

- Fibre fracture is assumed to occur between 0.15 and 0.2% of the external applied strain, where *K* decays dramatically
- Maximum *K* at the notch tip is observed in **0.05%** applied strain

Selected strain step for all the following cases (Neat and GNPs enhanced CFRPs)

Determination of *K* reduction

Results/Experimental, numerical and analytical data

Determination of *K* reduction

Results/Experimental, numerical and analytical data

<u>Remarks</u>

- The experimental value of *K* at the notch tip, in neat CFRPs, equals to 4.5
- The analytical and numerical methods overestimate the *K* value up to 19% and 25%
- The experimentally defined stress concentration profile agrees with the analytical and numerical ones
- Similar behaviour of the *K* profile is presented for the modified CFRPs
- The analytical and numerical methods overestimate the K value up to 30% in case of 2wt% GNPs enhanced CFRP

	Numerical & Analytical Models	Experiments
Voids/ Inclusions/ Fibre breakages	X	V
GNPs Geometry	X	V
GNPs Orientation	X	V
GNPs Properties	\checkmark	V

> 0.05% External applied strain

- No significant difference of *K* values in the far field
- Apparent difference at the notch edge
- *K* decrease up to 2% for 0.5wt% GNPs enhanced CFRP
- *K* decrease up to 8.8% for 1wt% GNPs enhanced CFRP
- *K* decrease up to 12% for 2wt% GNPs enhanced CFRP

Conclusions

- Stress reaches a plateau at distances greater than 1000 μm
- The experimental value of *K* at the notch tip equals to 4.5 for the neat composite
- Maximum *K* decrease up to 12% for 2wt% enhanced CFRP as observed from experimental data
- Discrepancy between experimental and analytical/numerical K value at hole edge
- The experimentally defined *K* profile agrees with the analytical and numerical ones
- GNPs act as a good reinforcement since part of the stress is distributed to the GNPs \longrightarrow K reduction
- Remote Raman is a high-sensitivity method to in-situ measure the deformation via a non-destructive manner and provide the data in real time

