Thermoplastic Injection Overmoulding Using Discrete Reinforcing Elements

Andrew Parsons

ICCM23, Belfast

Structure of talk

- Introduction
 - The ENACT overmoulding project
 - Fibre orientation in injection moulding
 - Determining fibre orientation distribution (FOD)
- Use of FOD to predict properties
 - Sub-element design, optimisation and manufacture
 - Simulation approach
 - Mechanical testing and results
 - Comparison with prediction, limitations
- Summary and next steps

Introduction to the ENACT project

- Innovate UK/IACME project
 - Follow on to TOSCAA project
- Overmoulding with discrete reinforcement
 - Small continuous fibre element
 - Not necessarily bridging load introduction points
- Need for improvement in predictive capability
 - Understanding the overmould behaviour FOD
 - Interface formation and quality
 - Stress management

University of

Fibre orientation in injection moulding

- Fibres align with flow action of shear and stretching
- Results in a complex, five layer fibre orientation

Determining fibre orientation distribution (FOD)

- General methods of capturing fibre orientation distribution
- Eddy Current
 - Large scale
 - Fast
 - Requires conductive fibre

- Microscopy
 - Mid scale
 - Highly skilled
 - Destructive

- MicroCT
 - Small scale
 - Data intensive
 - Expensive

Use of FOD to predict properties

Sub-element design

GENERATION

UNIVERSITY

UK CHINA | MALAYSIA

Original geometry

Sub element fill optimisation

0.5mm thickness geometry

1.5mm thickness geometry

UK CHINA | MALAYSIA

Sub element manufacturing

- Insert material:
 - SGL PA6 UD CF tape
 - 45,90,-45,0,0,0,0,0,0,-45,90,45
- Overmoulding material
 - Ultramid B3EG7 (PA6, 35 wt% short glass)
 - Opti-Polymers PA6 CF30 (30wt% short carbon)
- Conditioned to standard atmosphere

Sub element load cases

Load Case	Description
1	Tension –X
2	Out of plane bending –Z
3	In plane bending +Y

Sub element simulation pathway

Sub element mechanical testing

In plane bending

Out of plane bending

Tensile

Results for out of plane bending (-Z)

With no insert - no abrupt failure. Permanent deflection was induced

Failure behaviour was relatively consistent, stiffness increased with insert

With insert - split in the interface appeared on the top face, then the crack proceeded through the overmould

Results for in plane bending (+Y)

No insert - extreme deformation before abrupt failure for the glass

Failure behaviour was consistent, stiffness increased with insert

barable to out of plane. Split at interface

With insert - comparable to out of plane. Split at interface then progression though overmould. Failure at tensile side

The carbon samples unfortunately broke in the grip

Innovate UK

Results for in plane tension (-X)

No insert - failure via horizontal crack at hole

Failure behaviour less consistent during failure, stiffness increased with insert

SURFACE

GENERATION

With insert - failure via interlaminar cracking and peel of insert, followed by vertical or horizontal crack

Innovate UK

Comparison with model – Maximum load

- Isotropic model significantly underestimates result in each case
- FOD model tends to overestimate result
- Closest result for out of plane (-Z)

Failure comparison -Z

- Complete failure does not occur for the part with no insert
- Highest stress registered in flange, but failure at interface when insert present

Fully coupled -Z

- The fully coupled model also shows high strains in the flanges
- However, it also captures the failure likely hood near the insert

MICHIGAN STATE

Failure comparison +Y

- Failure locations captured in stress plot
- Stress concentration at corner of insert

Fully coupled +Y

 Stress highest in flanges, however fully coupled model very clearly identifies likely failure at corner of insert

Patran 2021 20-Dec-21 15:16:05

Fringe: SC1:Step 1:EVENT 1, A1:Time=1., IMPLICIT_HV3, NonLinear Output, , (NON-LAYERED)

Failure index

5.14-01

4.80-01

4.45-01

3.77-01 3.43-01 3.08-01

2.74-01

2.40-01

2.06-01

1.71-01

1.37-01

1.03-01

6.85-02

3.43-02

MICHIGAN

default_Fringe : Max 5.14-01 @Nd 629585

Min 0. @Nd 618779

Model comparison -X

- Failure locations captured in stress plot ٠
- Presence of insert diverts failure path

2 Stress, Von With insert 5.07E+1 MPa Stress, Von Miso omm **SURFACE** University of MICHIGAN Nottingham **GENERATION**

UK - CHINA I MALAYSIA

TATE

Fully coupled -X

- Much clearer indication of stress axially from hole
- Identifies insert peel then axial rather than transverse crack as more likely mode of failure

Summary and next steps

- Successfully produced demonstrator with repeatable mechanical behaviour and failure modes
- Successfully integrated software pathway to generate predictive model for mechanical behaviour
- Envelope of properties was captured but fidelity could be improved
- Successfully identified failure locations
- Improve model by:
 - Improving FOD information output from Moldex3D
 - Integrating healing model for interface properties

Acknowledgements

- Alasdair Ryder Surface Generation
- Lee Harper and Shuai Chen University of Nottingham
- Douglas Bradley Michigan State University
- Innovate UK [Project Reference: 105799]
- Engineering and Physical Science Research Council [Grant number: EP/P006701/1]

