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Introduction- Motivation Summary of work performed

There is a strong need in electric-based transportation for structural energy storage systems that are In this work, we investigated the electrochemical and mechanical performance of MSS based on GNFs,
lightweight and simultaneously offer both load bearing and energy storage capabilities in a single directly grown on carbon fabric (CF) electrodes, infused in a mixture of PEGDGE polymer matrix and
multifunctional platform. At the forefront of emerging Multifunctional Structural Supercapacitors (MSS) ionic liquid (EMITFSI) electrolyte.

technologies are carbon fibre reinforced composites (CFRP), promising considerable mass and volume Direct growth of GNFs on CF (gCF) by rf-PECVD method demonstrated to a significant enhancement

savings over traditional supercapacitors [1]. Current development of MSS [2,3] is mainly based on the of the specific capacitance (Cs,) and capacitive energy density (I), compared to the conventional
assembly of two electrodes made of carbon fiber (CF) fabrics separated by single/double dielectric (control) MSS device consisting of bare CF electrodes a 7.5 times improvement in.

glass fiber (GF) fabric separator, infused in a multifunctional solid polymer electrolyte (SPE) matrix. In a second phase of project, we show that activation of GNF-coated fabrics (UgCF) by a novel method

However, the commercially available pristine CF electrodes although offer excellent mechanical in a concentrated urea solution introduced a 3.5 at.% nitrogen doping to the hybrid fabrics, which led to
properties suffer from poor electrochemical storage performance, as they exhibit a surface area that is another significant leap in Cy,and 7y, over the control bare CF MSS device.

near 10000 lower than state-of-the art nanomaterials for conventional supercapacitors.

To tackle this deficiency, we modified CF with directly grown graphene nanoflakes (GNFs), 3-
dimensional networks of vertically oriented multiple graphene layers [4], to enhance their degree of
graphitization and active surface area. Recently, we demonstrated that GNFs directly grown on CF, by
microwave plasma enhanced chemical vapour deposition (MW-PECVD), not only improved the
interfacial shear strength by 101.5% but simultaneously led to a remarkable 28% enhancement in the

It was established that the urea activated GNF/CF hierarchical based MSS displayed improvements in
the electrochemical performance due to the combined effects of (i) increased graphitized surface area
promoting ion accumulation, (ii) high conductivity induced by nitrogen doping, favoring electron transfer
efficiency, and (iii) good electrical contact to the CF induced by the direct growth of GNFs.

Overall, in terms of Young’'s modulus (E), the nitrogen doped GNF-based MSS device also offered an

tensile strength of the single-fibre [5]. In unison, GNFs-coverage also increased electrical conductivity retentiorll OT structura_l eff.iciency of 0.9, showing potential f?r the “multifunction.al” applif:ation.s.
conventional liquid electrolytes [5]. storage electrodes by highlighting the importance of interfacial nanoengineering.
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Figure 1: Schematic illustration of steps used for the fabrication of structural supercapacitor: (A) CF — gCF: Direct

growth of graphene nanoflakes (GNFs) on bare carbon fibre (CF) fabrics by rf-PECVD. (B) gCF — UgCF: Urea activation Figure 2: SEM images of different fabrics: (a-c) bare carbon fibre (CF); (d-f) Graphene Nanoflakes (GNFs)
of GNFs-coated carbon fibre (gCF) fabrics (UgCF). (C) CF-(2GFs:SPE)-CF lay-up configuration of multifunctional deposited at carbon fibre (gCF); and (g-i) Urea-activated gCF (UgCF). The second row (b, e and h) represents
structural supercapacitor (MSS). (D) Fabrication of carbon fibre reinforced polymer (CFRP) composites based MSS images of the top surface of a single fibre, while the corresponding images of the third row (c, f and i) illustrate
klaminates, via resin infusion method. J \ the sidewall of a single fibre. j
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Figure 3: Raman and high-resolution X-ray photoelectron spectroscopic 5, g§ §§ s =~V step potential, representing the charge (left) and discharge (right) performances. The fitted data points
results. Top row: Raman (a) and high-resolution C 1s (b) and N 1s (c) XPS £ N §§ o were calculated by fitting the CA charge and discharge data to the current transient response of the RC
spectra of bare CF fabrics. Middle row: (d) Raman, (e) C 1s and (f) N 1s S | IS §§ §§ 7n equivalent circuit model (Inset of Figure 4b). (c) Specific capacitance (C,), derived from Equation S4. (d)
spectra of gCF fabrics. Bottom row: (g) Raman, (h) C 1s and (i) N 1s spectra of CF gCF UGCF UCF  CF gCF UgCF UCF Normalized specific capacitance values (Csp/CE,f) values.
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