LCA of CFRP in Aerospace: Energy Modelling of Autoclave Curing

<u>Chizoba Josphine Ogugua</u>, Sabin Anton, Mikel Dominguez Larrabeiti, Aditya Tripathi, Sean van Hees, Jos Sinke, Clemens Dransfeld

Aerospace Manufacturing Technologies Group

ICCM 23, Belfast, July - August 2023

- Motivation and objectives
- Autoclave curing
- Energy monitoring using power meter
- > Parametric models for energy consumption
- \succ Results and discussion
- \succ Conclusion

CFRP in Aerospace Applications - Advantages

CFRP Value Chain in Aerospace Applications

Manufacturing CFRP in Aerospace Applications

> Mainstream is thermoset CFRP with autoclave curing

ŤUDelft

Manual Collation

Automated Collation – AFP Robots

- What are the energyIntensive process Steps?
- What parameters

Goal and Objectives

- Create reliable energy inventory data for autoclave CFRP manufacturing
 - Can be used in LCA studies and cost estimations
- Identify hot spots regarding energy consumption
- > Identify process and design parameters that influence energy consumption
 - For optimisation

How?

ŤUDelft

- Energy monitoring using power meter Experimental study
- Energy estimation using thermodynamics based models

Energy Monitoring: CFRP Panel Manufacture

- ✓ Manufacture a CF/Epoxy panel via manual collation and autoclave curing.
 - Monitor Energy Consumption
 - Using 3-phase Power meter
 - Convert power logs to energy logs integral
- \checkmark Identify process steps with the most energy consumption

Results: Autoclave Energy Monitoring

Chizoba Josphine Ogugua | ICCM 23, Belfast

Thermodynamics Based Models

Two different models were used

MRT LBM – Multirelaxation Time Lattice Boltzman

Method

- Analytical Method Why?
 - Parametric and Scalable
 - Breakdown energy
 consumption Heat
 absorbing elements and
 heat losses

ÍUDelft

Thermodynamics Based Models: MRT LBM Method

Thermodynamics Based Models: Energy Conservation

Ist Order Thermodynamics Law: Energy Conservation

=

*f***U**Delft

$$Q_{inflow} = \frac{Q_{heat} + Q_{loss}}{\eta_{eff}} \times \eta_{Loading}$$

$$Q_{heat} = \rho. V. C_p \frac{\partial T}{\partial t}$$

$$Q_{heat}$$

$$= (M_F C_{p_F} + M_R C_{p_R} + M_{con} C_{p_{con}} + M_{air} C_{p_{air}} + M_{autoclave} C_{p_{autoclave}}) \cdot (T_{cure} - T_{\infty})$$

$$Q_{loss} = A \times \frac{K_a}{s} \times (T_r - T_{out}) \times t$$
Considering heating energy for heating up only laminates,

$$Q_{heat_L} = \rho. V. C_p \frac{\partial T}{\partial t} = h. A(T - T_{\infty})$$

Chizoba Josphine Ogugua | ICCM 23, Belfast

Vacuum pump

Compressor

ith

m

Heating elements

Results: Model Comparison

20.0 17.515.0 Energy [kWh] 12.5 10.0 7.5 5.0 Simulated Energy Analytical Method 2.5 Experimental Energy Log Simulated Energy MRT LBM Method 0.0 20 60 80 40 100 120 140 0 Time [min]

Simulated Autoclave Energy Consumption

- ✓ 10% difference between the two methods
- ✓ MRT LBM was a better match to the monitored result (only 1% difference.)
- Analytical Method has the least computational effort

ÍUDelft

Results: Energy Breakdown

Energy consumed by each heat absorbing element within the autoclave.

- ✓ Heat absorbed by the composite part < 3%
- ✓ Heat transfer to autoclave body contributed 75%
- ✓ Heat loss through the walls 22%

ŤUDelft

Results: What-if Analysis

Influence of Design and Process Parameters

Chizoba Josphine Ogugua | ICCM 23, Belfast

Results: What-if Analysis

Influence of Design and Process Parameters

 ✓ Cure temperature influence energy consumption

- Cycle time also influence energy consumption
- Thermal mass dominate for short cycles
- Thermal mass and heat
 losses dominate for
 short cycles

UDelft

400 70 Consumption per Cycle [kWh] 350 60 300 🔾 50 Preset Temperature 40 30 Ts 120 °C - Analytical 20 Ts 120 °C - Simulated Energy Ts 180 °C - Analytical 10 Ts 180 °C - Simulated 50 Tp 380 °C - Analytical Tp 380 °C - Simulated 0 0 200 100 300 400 500 0 Time [*min*]

Chizoba Josphine Ogugua | ICCM 23, Belfast

Conclusion

- ✓ Autoclave curing is a major contributor to energy consumption of CFRP Manufacturing
 - Energy Efficiency of Autoclave curing lies below 3%
- ✓ Thermodynamics based models can be used to create energy estimates of autoclave curing
 - Code readily available under MIT license (Please scan QR code)
 - Model can be used in autoclave design optimisation, process optimisation, energy inventory

especially in aerospace industry where data is proprietary and isn't readily available.

✓ Autoclave thermal mass and heat losses are major contributors to energy consumption of autoclave curing.

Models for Estimating Energy Consumption

Composites: Part A 166 (2023) 107365

Energy analysis of autoclave CFRP manufacturing using thermodynamics based models

Chizoba J. Ogugua^{1,*}, Sabin V. Anton¹, Aditya P. Tripathi¹, Miguel Dominguez Larrabeiti¹, Sean O. van Hees¹, Jos Sinke², Clemens A. Dransfeld³

Aerospace Manufacturing Technologies, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, South Holland, The Netherlands

Chizoba Josphine Ogugua | ICCM 23, Belfast

Check fo updates