

#### Self-Assembly of Polypyrrole Micro-foam/Carbon Nanotube Composite Electrode for Flexible Supercapacitors

#### Sung Hwa Hong, Harvey HaoTian Shi, Hani E. Naguib

Department of Mechanical and Industrial Engineering

University of Toronto



Toronto Smart Materials & Structures University of Toronto



### Outline

- Introduction
- Motivation & Objectives
- Fabrication Technique
- Results & Discussion
- Conclusions



# The Need of Flexible Energy Storage





**TSMART** Toronto Smart Materials & Structures University of Toronto

Sources: Google Project Jacquard, Erogear, STMicroelectronics, Softrobotics

# **Introduction: Electrochemical Capacitors**





10 h

10<sup>3</sup>

## **Gaps & Motivations**

- Low energy densities with current textile energy storage devices, specifically ECs
- Excessive bending and stretching leading to pre-mature cell failure
- Lack of facile fabrication routes for microscale surface modification of EC textile electrodes
- Issues with electrode/electrolyte interfaces

5



# **Fabrication: Multilayer Self-Assembly**





**TSMART** Toronto Smart Materials & Structures University of Toronto

## **Surface Morphology**





246.9 mlog(Arb)



- Increased surface • roughness
- **Conductive Layer** • ensures electron transfer

#### **TPU/CNT/PAni** Surface

- Flat morphology ٠
- PAni did not form 3D porous structures
- Attributed to lack to incompatibility during polymerization

Toronto Smart Materials & Structures Tsmart University of Toronto

# **Multilayered TPU/CNT/PPyMF Structures**

#### **TPU/CNT/PPyMF** Surface

- Functionally graded morphology
- PPy microspheres formed 3D structures that facilitates electrolytic ion transfer
- Py monomer swelled **TPU/CNT** system during polymerization, allowing conductive polymer structures to adhere rightly on the flexible substrate

University of Toronto









### **Multilayered TPU/CNT/PPyMF Structures**

#### **TPU/CNT/PPyMF** Surface

- PPy Microspheres have diameters of about 851nm on average
- Active layer thickness is about 200-300µm
- Can be effectively tuned via changing self-assembly parameters





1600

## **Electrode Flexibility**





- Both TPU/CNT/PPyMF and TPU/CNT/PAni electrodes
  experienced desirable flexibility during testing.
- No permanent deformation observed after repeated bending and flexing.

**Toronto Smart Materials & Structures** University of Toronto

## **Electrical Conductivity and Surface Energy**





| Sample Name   | C1s        | N1s        | O1s        |
|---------------|------------|------------|------------|
|               | (Atomic %) | (Atomic %) | (Atomic %) |
| Pristine TPU  | 71.86      | 1.98       | 23.37      |
| TPU/CNT       | 72.73      | 3.04       | 19.62      |
| TPU/CNT/PAni  | 75.55      | 6.92       | 13.16      |
| TPU/CNT/PPyNF | 70.03      | 16.32      | 4.86       |

- XPS was performed to confirm the material composition and to verify the growth of the conducting polymers on the surface.
- The increase in nitrogen content indicates successful polymerization since PAni and PPyNF contains nitrogen.
- For TPU/CNT/PAni, due to the lack of adherence of PAni on the surface of TPU/CNT, there was only a slight increase in carbon and nitrogen.
- On the other hand, TPU/CNT/PPyNF system showed a drastic increase in nitrogen content.

Tsmari

## **Electrical Conductivity and Surface Energy**





- Both TPU/CNT/PPyMF and TPU/CNT/PAni electrodes experienced an increase in electrical conductivity, however, due to the conductive polymer microsphere network formation, TPU/CNT/PPyMF has an electrical conductivity of 713.4 S/m on average.
- Water droplet test shows that the PPyMF structures are well structured to facility electrolytic ion transfer and would allow interactions with the entire internal surfaces.

**TSMART** Toronto Smart Materials & Structures University of Toronto

### **Electrochemical Comparisons**



Both TPU/CNT/PPyMF and TPU/PPyMF electrodes offered an increase in the capacitance, however, it is shown that the addition of CNT layer contributed to more than 100% increase in the areal specific capacitance due to enhanced PPy growth and adhesion.

### **Electrochemical Analysis of TPU/CNT/PPyMF**





### **Electrochemical Analysis of TPU/CNT/PPyMF**





- Throughout the cycling test, Nyquist plots for TPU/CNT/PPyNF stayed consistent during the cycling stability test, which is an indication that the interface between each layer was not substantially affected by the charging/discharging cycling.
- However, for the TPU/PPy samples, the charge transfer resistance at the electrode/electrolyte interface increased drastically, which may be attributed to the interfacial debonding between the PPy layer from the TPU surface.



- Methodology demonstrated a facile method to enhance electrode capacitance performance via microstructuring.
- Sandwiched flexible TPU/CNT/PPyMF structure achieved a specific capacitance of 712 mF/cm<sup>2</sup>.
- Conductive CNT middle layer aided the charge transfer during fabrication and therefore improved the overall performance.
- Repeated bending and stretching showed minimal impact on performance.



### **Thank You for Your Attention!**