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The Needs for Next Generation of Flexible Electronics

*» Electronics degrade over time due to fatigue, environmental conditions, or damages
Incurred during operation leading to eventual failure of the material.
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Limitation

« Shortens lifetime of device
 Changes/weakens original integrity
« Causes device malfunctioning
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Functionalities of Flexible Electronics
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Motivation and Objectives

Motivation

*» Facile methodology for flexible electronics with high-performing device performance
¢ Substrate material for long-term utilization of devices
*» Material exhibiting the self-healing properties with high toughness

Objectives

¢ Fabricate supercapacitor through facile methodology
¢ Design and synthesize self-healing polymer for flexible electronics
¢ Achieve high toughness material that exhibits self-healing behavior
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Weak interaction Strong interaction

» Chain flexibility / mobility » Low chain flexibility / mobility
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Reported strategies to enhance toughness for smart skin:
1) Addition of filler
2) Molecular modification of polydimethylsiloxane (PDMS)

3) Molecular modification of polyurethane (PU)
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In Situ Fabrication of Fiberous Gel-Elastomer for

Exceptionally Tough Material
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\ « Low toughness
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Key Properties

High toughness
Stretchability

Limitation

High Young’'s Modulus
Limited self-healability

Blend!

SP = self-healing polymer
PU = polyurethane
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Fabrication of SPB Gel-Elastomer

Surface
coating
» Polymerlzatlon
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Fabrication of SPB Gelastomer
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Mechanical Properties of SPBs

207 [— sPB1-Fe0.5
—— SPB1-Fel
:EEE;E? p-lgli)/;g:/ Young’s Elongation at Toughness
- 15+ U crosslinker modulus (MPa) break (%) (MJ/m3)
s SPB1-Fe0.5 2.38+0.71 456 + 39 7.8+1.0
é 1 SPB1-Fel 3.40 £ 0.62 809 + 60 31.3+35
7 SPB1-Fe3 3.11 +0.40 552 + 126 15.2 +2.9
> SPB1-Fe5 2.19 +0.24 447 + 88 7.9+3.0
%f’\l SPB3-Fel 1.82 +0.13 335 + 86 3.7+17
%0 20 a0 e0 &0 1000 PU 8.65 + 0.85 1020 + 159 100.9 + 20.0

Strain (%)

r
* Young’s modulus was significantly reduced.

* Relatively high toughness was achieved.

5 High fracture strain due to transient boding that dissipates the stretching energy through association-dissociationJ
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Mechanical Properties of SPB

207 [—— sPB1-Fe0.5
— SPB1-Fel
- SPB1-Fe3
—— SPB1-Fe5
15| |——SPB3-Fel
——PU
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Stress (MPa)
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. Young’s modulus was significantly reduced.

« Toughness was enhanced.
High fracture strain due to transient boding that dissipates the stretching energy through association-dissociatiorL
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Self-Healing Capability of SPB

Macro-indentation

Nanoindentation
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Self-Healing Test at Macroscale

SPB1-Fel

FO'Min - &

* Macro-indentation experiment is representative of damages from everyday life.
» Optical microscopic images show that the self-healing polymer blend heals at room temperature without any energy input.
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Self-Healing Test at Microscale

SFbl-Fel
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Tactile Sensing Capability of SPB
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SPB as an Energy Storage Device

Symmetrical cell using
1 M H,SO, and voltage up to 1.2 V
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Conclusion

] ) e?o
« Gel and elastomer polymer blend has not been studied for highly tough and i

self-healing material.
« Homogenous and freestanding material was obtained from electrospinning in-situ.
« Achieved a high toughness below 5 MPa of Young’s Modulus.
 Efficient healing at room temperature without any external aid.
« Demonstrated the capability for smart skin as an energy storage device and tactile

Sensors.
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Thank You for Your Attention!
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