

International Conference on Composite Materials ICCM 23

An Analytical Model For Interlaminar Friction Prediction In Prepreg Composite

D. Mocerino, D. Aveiga, C. Gonzalez

30 July - 4 August 2023

AGENCIA ESTATULION

Diciembre 2019 – Diciembre 2023

Outline

- Thermoforming, defects and friction
- Pull-out Test and Tests Results
- Interlaminar Contact Surface Examination
- Analytical Model ad Lubrication Theory
- Results
- Conclusion

dea

materials

Thermoforming, defects and friction

AS4/8552 PREPREG COMPOSITE

- Solid and viscous behaviour
- Temperature sensitivity

materials

www.materials.imdea.org

Friction

- In the process of thermoforming, it can be observed that individual lamina within a given laminate undergoes varying degrees of deformation.
- Frictional resistance exists between the layers.
- Stress concentrations may arise due to the incapacity of certain areas of the lamina to undergo deformation.
- The formation of wrinkles occurs in areas where the primary stress is compressive.
- Following the application of a distributed pressure, the initial visible appearance is the occurrence of outof-plane fibre waviness, followed by the formation of in-plane wrinkles.

*K. C, inar, N. Ersoy, Effect of fibre wrinkling to the spring-in behaviour of L-shaped com-posite materials, Composites Part A: Applied Science and Manufacturing 69 (October)(2015) 105–114.

Mdea

materials

Interlaminar Shear Characterisation

Friction Test:

Temperature (°C)	40, 60
Pressure (bar)	0.5, 1, 2
Velocity (mm/min)	1, 3, 5, 10

Variables

Friction Calculations TENSILE CLAMP ALUMINIUM (2c) 3c (4a) (5) (4) 7 8 (6) (5) 3 (3a)

Sample.

(1d)

ЗЬ

9

Interlaminar Shear Characterisation

Friction Test: Is there a difference between ply-ply friction and ply-tool friction?

Ply-Tool

institute dea materials

PLY-TOOL

PLY-PLY

PLY-TOOL

Clamping Pressure (bar)	Pulling velocity (mm/min)	Friction coefficients at 40°C Ply-Tool	Friction coefficients at 60°C Ply-Tool	2.0- ₹
	1	0.47 ± 0.02	0.17 ± 0.03	<u>ie</u> 1.5 -
0.5	3	0.68 ± 0.02	0.23 ± 0.02	ffic
	5	0.78 ± 0.02	$0.28 {\pm}~0.008$	e loe
	10	$0.86 {\pm}~0.04$	0.39 ± 0.01	
	1	$0.30 {\pm} 0.02$	$0.10 {\pm} 0.008$	tio -
1	3	$0.42{\pm}0.04$	$0.13 {\pm} 0.007$	<u>, 0.5</u>
1	5	$0.44{\pm}0.02$	$0.15 {\pm} 0.008$	
	10	$0.55 {\pm} 0.06$	$0.18{\pm}0.005$	
	1	0.21 ± 0.006	0.07 ± 0.007	- 0.0 🕊
2	3	$0.33 {\pm} 0.01$	$0.09 {\pm} 0.007$).U
	5	$0.35 {\pm} 0.02$	$0.19 {\pm} 0.008$	L.
	10	$0.47 {\pm} 0.02$	$0.14{\pm}0.005$	

10

PLY-PLY

Clamping Pressure (bar)	Pulling velocity (mm/min)	Friction coefficients at 40°C Ply-Ply	Friction coefficients at 60°C Ply-Ply	2.0 - a) 40° C 1 bar $2 \text{ b) } 60^{\circ}$ C 1 bar $2 \text{ b) } 60^{\circ}$ C $2 \text{ b) } 60^{\circ}$ C 2 bar
0.5	1	0.59 ± 0.03	0.1 ± 0.004	
	3	1.08 ± 0.03	0.19 ± 0.01	
	5	1.23 ± 0.03	$0.25 {\pm}~0.005$	
	10	$1.31 {\pm}~0.07$	0.3 ± 0.03	
1	1	0.33 ± 0.007	$0.09 {\pm} 0.007$	
	3	0.67 ± 0.04	$0.15 {\pm} 0.001$	
	5	$0.85 {\pm} 0.04$	$0.19 {\pm} 0.009$	
	10	1.27 ± 0.03	$0.26 {\pm} 0.02$	
2	1	0.23 ± 0.03	0.06 ± 0.003	
	3	$0.41{\pm}0.04$	$0.09 {\pm} 0.008$	0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 Displayers at wells site U_{i} (see (with) Displayers at wells site U_{i} (see (with))
	5	$0.54{\pm}0.01$	$0.13 {\pm} 0.01$	Displacement velocity U (mm/min) Displacement velocity U (mm/min)
	10	$0.85 {\pm} 0.02$	$0.14{\pm}0.01$	

KLA II AlphaStep" D-500

Contact type	40°C	60°C
Prepreg-prepreg Prepreg-tool	$\begin{array}{c} 3.22 {\pm}~0.23 \\ 3.93 {\pm}~0.46 \end{array}$	$3.17 \pm 0.66 \\ 3.10 \pm 0.12$

Roughness & Resin Layer

H = Hersey Number η = Viscosity (Pa.s) \dot{U} = Velocity (s^{-1}) P = Pressure (Pa) $\eta(T) = Ae^{\frac{-B}{RT}}$

$$A = 2.06548437 \times 10^{-9}$$

 $B = 7.9498278 \times 10^{4}$
 $R = Gas constant$
 $T = Temperature (K)$

www.materials.imdea.org

 10^{-5}

Used Material AS4/8552

L≈64µm A≈3.5µm h₀ = [3 – 15µm]

<u>Results</u>

Parametric Study

İ.

www.materials.imdea.org

i b dea materials

- Elevated temperatures have the potential to reduce the viscosity of the resin, leading to a notable decrease in the friction coefficient by a factor of 6 to 10. When high pressure is taken into consideration, the coefficient may decrease by a factor ranging from 15 to 18 times its original value.
- In general, it was observed that the Ply-Ply configuration exhibited higher friction values due to the presence of two additional layers of adhesive prepreg. Nevertheless, the frictional resistance exhibited identical behaviour as observed in the previous scenario.
- The examination of the prepreg surface after friction has revealed certain geometric characteristics such as resin accumulations, exposed fibres, and surface roughness. The phenomenon can be represented by a sinusoidal shape characterised by a specific wavelength and roughness.
- An analytical model was formulated. Using the wavelength and amplitude of the resin accumulations on the prepreg surface as inputs, a reliable friction coefficient can be determined.
- By comparison of the model and experimental results, a minimal deviation is detected in the prepreg-prepreg interaction at higher Hershey values. The observed outcome was postulated to be a result of dry lubrication, which can be attributed to the prevailing solid-to-fluid behaviour of the resin

- Madrid Community Project TEMACOM Advanced manufacturing technologies for the new generation of composite materials.
 - Imdea Materials Institute
 - FIDAMC

Prof. Carlos González

David Aveiga

Comunidad de Madrid

Thanks for your attention

Any questions?

