

Fibre Sizing Effect on the Adhesion Between a Carbon Fibre and a Reactive Thermoplastic Polymer

Ross F. Minty, Sophie Cozien-Cazuc, Alex Ryding, Jon-Paul Griffiths and Kevin Lindsey

23rd International Conference on Composite Materials (ICCM23) 30th July – 4th August

- Introduction
 - Thermoplastic: Monomer to Automotive Parts (TMAP) project
- Experimental
 - Fibre Re-treatment Process
 - Single Fibre Fragmentation
- Results
 - Apparent IFSS measured for different sized fibres at 10 mm gauge
 - Apparent IFSS measured for different sized fibres at 20 mm gauge
- Conclusions
- Future Work

(Established 1860)

ΤΜΔΡ

- Global interest in cleaner, more sustainable forms of transport
 - Lightweighting via thermoplastic composite materials
- Fibre–matrix interface influences key mechanical properties
 - Traditionally the interface for thermoplastics is weaker than that for thermosets
- Primary theory for interface revolves around chemical bonding
 - Bulk of fibre coatings (sizings) developed for last generation thermosetting systems
 - How do thermoplastic sizings compare to thermoset in terms of performance?
- Investigation into the impact of sizing chemistry on interfacial properties for a reactive thermoplastic (Elium[®]) with carbon fibre

(Established 1860)

Thermoplastic: Monomer to Automotive Parts **TMAP**

- Innovate UK funded project with consortium containing 4 partners:
 - Far-UK Ltd
 - M. Wright & Sons Ltd
 - University of Derby
 - OXECO Ltd
- To meet the future needs of the vehicle production, industry techniques of reducing CO₂ are required
- Programme to develop materials that could provide weight reduction for the automotive sector without affecting performance, safety or quality of vehicles
- Materials developed based around thermoplastics due to enhanced recyclability and the processes focussed on ensuring materials are cost effective in structural applications in the automobile industry

TMAP

- Fibre re-treatment process led by OXECO
- 3D woven carbon fibre developed & supplied by M. Wight & Sons
- Derived formulations specifically designed to work with Elium[®]
- Removed commercial sizing from 3D-woven fabric via fabric washing/clean process
- Various processes investigated for re-sizing fibre fabrics
 - Dip coating
 - Fibre spraying
 - Infusion of fabric

(Established 1860)

Development of Re-treatment Process

TMAP

Code	Binder	Fabric Pre-Wash	Formulation % solids (wt/wt)	Coat Weight (wt/wt)	Coating Method
11	Low Viscosity Poly Vinyl Acetate Ethylene Dispersion	Acetone	0.95%	0.9%	Dip
12	Low Viscosity Poly Vinyl Acetate Ethylene Dispersion	1,3-Dioxolane then Acetone	0.95%	0.9%	Dip
13	Low Viscosity Poly Vinyl Acetate Ethylene Dispersion	None	0.95%	0.8%	Dip
14	Low Viscosity Poly Vinyl Acetate Ethylene Dispersion	Acetone	1.73%	1.0%	Infusion
15	High Viscosity Poly Vinyl Acetate Ethylene Dispersion	Acetone	0.95%	0.9%	Dip
16	High Viscosity Poly Vinyl Acetate Ethylene Dispersion	Acetone	1.71%	1.1%	Infusion
17	High Viscosity Poly Vinyl Acetate Ethylene Dispersion	Acetone	0.85%	0.7%	Infusion
18	High Viscosity Poly Vinyl Acetate Ethylene Dispersion	None	1.71%	0.98%	Infusion
19	Low Viscosity Poly Vinyl Acetate Ethylene Dispersion	None	2.26%	1.12%	Infusion

M.Wright & Sons Ltd. Engineered Textile Structures (Established 1860)

M.Wright & Sons Ltd. Engineered Textile Structures (Established 1860)

(Established 1860)

SFFT Sample Manufacture

Fragmentation mould prior to sealing and addition of resin

Sealed fragmentation mould with resin and fibres

(Established 1860)

9

SFFT Sample Manufacture

TMAP

(10)

Elium® plaque containing fibres prior to machining

Fragmentation samples after CNC machining

(Established 1860)

Fragmentation samples prepared for testing

Single Fibre Fragmentation Test

- Testing conducted using a Testometric M500 machine, equipped with 1 kN load cell and specialized grips for testing SFFT samples
- In-house environmental chamber constructed to allow for testing at ~ 50 °C

Microscope photo at 250x magnification with fibre breakage highlighted.

Force-displacement plot for fragmentation tests

Engineered Textile Structures (Established 1860)

Single Fibre Fragmentation Test

- Samples tested until saturation observed, with 10 mm & 20 mm gauge lengths studied per sample
- Fragmentations within gauge observed via microscopy following testing

Microscope photo at 250x magnification with fibre breakage highlighted.

Force-displacement plot for fragmentation tests

M.Wright & Sons Ltd.

Engineered Textile Structures (Established 1860)

ΤΜΔΡ

Results: IFSS (10 mm Gauge)

Results: IFSS (20 mm Gauge)

TMAP

- Location of fragments on re-treated fabric/fibre samples were inconsistent, with localised areas containing multiple fragments whilst the rest of the fibre contained none
 - Suggests inconsistencies with coating application & issues with acetone solvent consistency
- Fibre diameter values for re-treated fabric/fibre samples were consistently larger than for the 'as-received' commercial samples
 - Hypothesised that this extra diameter is from the coating process
- Commercially thermoplastic sized fibres observed to possess highest IFSS with Elium[®]
- Adhesion between fibre & thermoplastics still seems to be lagging behind comparable thermosets

TMAP

- Results presented show that that the IFSS was strongly dependent on the sizing chemistry applied with the commercial thermoplastic sizing applied providing the largest respective IFSS
- Degree of adhesion observed for a thermoplastic polymer bonded to a fibre coated in a thermoplastic sizing was lesser than the equivalent epoxy combinations
- Whilst the IFSS values for the re-coated fibres were observed to be smaller, this may have been more down to the removal of the initial sizing, and re-coating process for the fibre in its 3D-woven form
- Challenges encountered may mirror those when investigating recycled fibres, given these too will require the development of scalable re-treatment processes

TMAP

- Building on the presented work:
 - Further study of Elium[®] with commercially sized glass & carbon fibres
 - Surface analysis of re-treated fibres via SEM & XPS
 - Interface investigation utilising different micro & macro-mechanical methods
 - Investigation of re-coating techniques specifically with recycled fibres
- My Research Pillars after returning to Strathclyde:
 - Fibre-matrix interface characterisation/optimisation of new, sustainable fibre/polymer combinations
 - Development and characterisation of fibre sizings
 - Composite surface adhesion for multi-material structures
 - Composite meta-materials

http://www.strath.ac.uk/compositematerials/

M.Wright & Sons Ltd. Engineered Textile Structures (Established 1860)

Thank you

Any Questions?

M.Wright & Sons Ltd. Engineered Textile Structures (Established 1860)

(18)