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XY Pultruded profiles inside the +80 m wind turbine blades

Shear web

Glass fiber layers Carbon pultrusions as
pre-manufactured elements
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Pultruded carbon fiber profiles

Pictures from Fiberline.com
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Casted into blade moulds like this Vestas blade mould

DTU Wind Energy Picture from Vestas for its V236-15.0 MW™ turbine, Blade length 115.5 m



DTU Wind Energy

=
—]
—

W

Stress state in compression
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Workflow to be presented

Fiber and matrix properties
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Predict compression strength based on

Uniaxial stress-strain curve of the fiber and matrix material
— Ramberg-Osgood fitting

Material orientation distribution determined from 3D x-ray scan
— Python script for Structure tensor analysis
— User-subroutine mapping using orient.f in Abaqus

Geometrical and material non-linear (incremental) finite element model
— Umat.f user-subroutine in Abaqus

Predict the load-deflection curve of specific scanned samples
— No failure criteria but based on load maximum due to material point rotations

DTU Wind Energy 7
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Predict compression strength based on

* Uniaxial stress-strain curve of the fiber and matrix material
— Ramberg-Osgood fitting

» Material orientation distribution determined from 3D x-ray scan
— Python script for Structure tensor analysis

— User-subroutine mapping using orient.f in Abaqus

« Geometrical and material non-linear (incremental) finite element model
— Umat.f user-subroutine in Abaqus

* Predict the load-deflection curve of specific scanned samples
— No failure criteria but based on load maximum due to material point rotations

DTU Wind Energy 8
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Mechanical properties of specific epoxy material
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https://doi.org/10.1016/j.euromechsol.2023.105011
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= Mechanical properties of the polymer matrix material
- Tension vs shear
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Carbon fiber properties in tension
- Non-linear behavour
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Good agreement between non-linear fibers and Rule of Mixture defined composite behaviour in tension

DTU Wind Energy Kumar, Mikkelsen, Lilholt, Madsen (2020),
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Carbon fiber properties in compression
- back calculation from compression test of the composite
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Ramberg-Osgood fitting
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- Properties of pultruded carbon fiber composite
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DTU Wind Energy Kumar et al. (2021) doi:10.5281/zenodo.5092028
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Predict compression strength based on

 Uniaxial stress-strain curve of the fiber and matrix material
— Ramberg-Osgood fitting

» Material orientation distribution determined from 3D x-ray scan
— Python script for Structure tensor analysis
— User-subroutine mapping using orient.f in Abaqus

« Geometrical and material non-linear (incremental) finite element model
— Umat.f user-subroutine in Abaqus

* Predict the load-deflection curve of specific scanned samples
— No failure criteria but based on load maximum due to material point rotations
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3D x-ray tomography (Zeiss Versa 520)
- carbon fiber composites

Scan samples

HE

1.56 x 1.01 x 1.77mm" FoV

2 X 2 x 2mm?3 Field of View (FoV)
Voxel size: 1.98 microns, dy = 7 microns

5 X 5 mm?2 cross-section
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Material orientation segmentation
- Structure tensor method

o . Noise scale
« computing derivatives

Structure tensor method in 2D

p : Integration scale
« averaging over the neighborhood

Value of p : scale with fiber-diameter
« Small give local orientation
» Large captures the overall orientation

3D X-ray scan Dominating direction is given by the

smallest eigenvector

DTU Wind Energy Jeppesen, Mikkelsen, Dahl, Christensen, Dahl (2021),


https://doi.org/10.1016/j.compositesa.2021.106541
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Fiber orientation in 3D
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Fiber orientations in 3D
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= Mapping orientations on 3D mesh using Python

o
Structure tensor segmented b 1 5l
X-ray scan e
—
5 5 L J
éﬂ SUBROUTINE ORIENT (T,NOEL,NPT,LAYER,KSPT,COORDS,BASIS,
ORNAME ,NNODES , CNODES , JNNUM)
ro*® C
INCLUDE 'ABA PARAM.INC®
C
CHARACTER*-( ORNAME
- .5° CHARACTER*”5¢ JOBNAME, OUTDIR, FILENAME
C
DIMENSION T(3,2),COORDS(3),BASIS(2,3) ,CNODES (2,NNODES)
e DIMENSION JNNUM(NNODES)
L
— <-10° ==

- : I INCLUDE 'A0lcrop THETA.L'
- ! / INCLUDE 'AO0lcrop PHIL.L'

T(1,1) DCOS (PHIO (NPT,NOEL))

Finite element model wifh

. . . T(l,2) = -DSIN(PHIO(NET,NOEL))
27 integration points TOL = 0.
. real*s PHIO (27 T(2,1) = DCOS(THETAO (NPT ,NOEL))*DSIN (PHIO (NPT ,NOEL))
in each element DATA (PHIO(I 0.01736 T(?,7) = DCOS(THETAO (NPT ,NOEL) ) *DCOS (PHTO (NPT, NOEL) )
s o oloaco o Lros T(2,3) = -DSIN(THETAO (NPT ,NOEL))
P Lol T(3,1) = DSIN(THETAO (NPT ,NOEL))*DSIN (PHIO (NPT ,NOEL))
R S T(3,7) = DSIN(THETAO (NPT,NOEL))*DCOS (PHIO (NPT ,NOEL))
& U.bgoola, U 22109, T(3,3) = DCOS(THETAO (NPT,NOEL))
& -0.015539 10 .029493,
& 0.023 386, 0.025 L RETURN
& 0 055, 21 END
& 0.026 7397, 1
& 0. 0749, 6:
DATA I=1,: 0 8
& 0 0498, 4
& 0 827,

real*s THETAO(27,510)

DATA (THETAO(I,l), I=1,27)/ -0.460082, -1.008942, -1.448212,
& -0.468504, 0.951642, 0.233209,

& 0.372499, -0.511249, 0.396310,

DTU Wind Energy



https://doi.org/10.1016/j.simpa.2023.100523

DTU Wind Energy

=
—]
—

o
o
oo

DTU Wind Energy

Predict compression strength based on

Uniaxial stress-strain curve of the fiber and matrix material
— Ramberg-Osgood fitting

Material orientation distribution determined from 3D x-ray scan
— Python script for Structure tensor analysis
— User-subroutine mapping using orient.f in Abaqus

Geometrical and material non-linear (incremental) finite element model
— Umat.f user-subroutine in Abaqus

Predict the load-deflection curve of specific scanned samples
— No failure criteria but based on load maximum due to material point rotations
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Voigt: Iso-strain and
rotation of fiber and matrix
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shear stress of fiber and matrix

d-zfz - 0-217% U1fz = 0-17721
Fibres: Ef; vr; 0 ]50 n}w
d'f Ukl(oj)gkl
Matrix: E,; Vi 011510; nglo
-_ml — L]kl(o-gnl)g
17}12 - L]kl(o-e 2)8

Composite: I/; = 0.62

Ojj = L]kl(VfCl]kl'Cljkl' Ukl)gkl

Jensen and Christoffersen (1997); Skovsgaard and Jensen (2018)
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Predict compression strength based on

 Uniaxial stress-strain curve of the fiber and matrix material
— Ramberg-Osgood fitting

» Material orientation distribution determined from 3D x-ray scan
— Python script for Structure tensor analysis
— User-subroutine mapping using orient.f in Abaqus

« Geometrical and material non-linear (incremental) finite element model
— Umat.f user-subroutine in Abaqus

» Predict the load-deflection curve of specific scanned samples
— No failure criteria but based on load maximum due to material point rotations
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Conclusion

* Properties in model
— Stress strain curve of matrix material
— Stiffness of stress-strain curve for fiber material
— Fiber volume fraction
— Fiber orientation distribution

 Finite Element Model
— Non-linear composite material model
— No failure criteria, load maximum due to local material point rotation during loading

Prediction
— Realistic compression strength predictions
— Show high dependency on small rotation with respect to the overall fiber orientation
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Larger FoV using lab based X-ray scattering techniques

Top View - Photo
« Global fiber direction Orientation [Deqg]

Honzontal [cm]

DTU Wind Energy Slyamov, ..., Mikkelsen, IOP Conf- Ser.: Mater. Sci. Eng. In press, 43™ Risg Int. Symp. on Materials Science, 2023
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+o Composites for wind energy:

-3 Manufacturing, operation and end-of-life

Composites for wind energy:
Manufacturing, operation and
end-of-life

4 - 7 September 2023

The focus of the 43rd Risg Symposium is on composites for
wind energy. This symposium takes a life cycle perspective and
addresses manufacturing, performance during operationand

end-of-life of composites for wind energy. Over the last 40 years,

wind turbine blades have grown an order of magnitude. Today,
the longest blades are exceeding 100 meters and weighing 50
tons. Because of this growth in blade size, the cost of wind
energy can now compete with fossil-based energysources on
market terms.

As society is thriving towards a zere-emission future, thewind
energy sector is foreseen to further expand. Longer wind
turbine blades with improved overall lifetime, reliability,
recyclability, sustainability, operability and maintainability are
some of the objectives set on this component. Toaddress these
upcoming and ambitious requirements, the symposium
welcomes contribution dedicated to the manufacturing, the
operation and performance, as well as end-of-life strategies for
wind turbine blades.

Important Dates

15 March 2023: Abstract submission
01 July 2023: Paper submission

https:/Aww.morressier.comj/call-for-

papers/63ff34e08d36d800127feb22

31 August 2023: Registration deadline

Manufacturing

Charactenzabon and development of manufactunng
processes for wind furbme blades

Existing and alternative manufacturing technologies, |
constraing and new opportunities, process
charactenzation, cure kinetics and residual
stresses, modelling, manufactunng defects, repair.

Operation

Expenmental characlerization, mechanical
properties and perfarmance of composites
for wind turbine blades

Structural design and performance of blade
structures. Key composite design properties
stifiness, strength, fracture and fatigue
resistance; Materials development: hybrid,
big-based, thermoplastic composites and
smart matenals; adhesive joints  and
fibre/matnx interfaces; Leading edge erosion,
repair, structural health monitoring. Micro
and macro structural characterization using
X-ray tomography and ultrasound; Novel test
maethods for composites under static and
cyclic loading; development of test methods
for structural elements, e g ply-drops and
wrinkles, and full-scale tasting of blades

End-of-life
Strategies lo address the end-oflife challenges of
composites and of wind turbine blades

Reuse and Iifetime extension, recyclable
composite, composite recycling processes,
repurposing, decommissioning, life-cycle analysis
(LCA) Recycling of manufacturing waste and and-
of-use wind turbines, recycling processes and
products incorporating recycled matenals, materal
substitution in wind turbine blades increasing the
recycled content

Registration

The registration fee is DEK 4500 (approx.
EUR &00), and covers access to lectures,
lunch and refreshments all days, conference
dinner, and social arangements. The
registration fee for students is DKK 2000
{approx. EUR 270).

Contact

Lars P. Mikkelsen, Chairman

Justine Beauson, Chairwoman
E-mail: sympd3@vandenargy diu dk
Website:

https Jwind diu.dk/aboul/symposium-
on-materials-scignce
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Coursera course and 8" CINEMAX PhD summer school
on X-ray tomography to FE-modelling of materials

coursera Q

Technical University of Denmark and University of Copenhagen present
The 8™ International Summer School

DTU  CINEMAX
==

www.fuglsangherregaard.dk 21-25 August 2023

For PhD students, Post Docs and industrial researchers

Venue

Viewing as Staff <@ Preview Course Materials Fuglsa ng Manor on Lolland
in Southern Denmark

< Physical 5dence and Engineering Onlv € 900 cove ring

Introduction to advanced accommodation and
Including all meals
tomography

hhkdir 47 52 ratings

Lectures and exercises cover the full pipeline from data acquisition through

reconstruction and segmentation to modelling based on real 3D data. m m “ M".‘

The online Coursera course must be completed before arrival:

Lors PR Mot https://www.coursera.org/learn/cinemaxe of natural and synthetic materials

(a fee of € 44 applies to complete the honors track of the coursera course)

Offered By

DTU Technical University

o—p ©f Denmark
—
—

Key dates

GoTo Course Registration deadline: 15 July 2023
(limited number of participants, first come — first served)

Poster abstracts by: 15 August 2023

Already enrolled

Financial aid available

3,919 already enrolled You will work with real problems on your own laptop!
Please contact Signe Dan Jensen <sidje@dtu.dk> to receive further details directly.

Included with Unlimited access to 7,000+ courses, Projects,
coursera Specializations, and Professional Certificates. (11]

L] L N @
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] I E RN

3 o3383% Ll
About Instructors  Syllabus  Reviews  Enrollment Options  FAQ '] o & & 8 &
"o oo

R
Hands on exercise with 3D
imaging on site!

0.cC
About this Course MATHENATICS AND WECHANICS p AN q

5,878 recent views
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