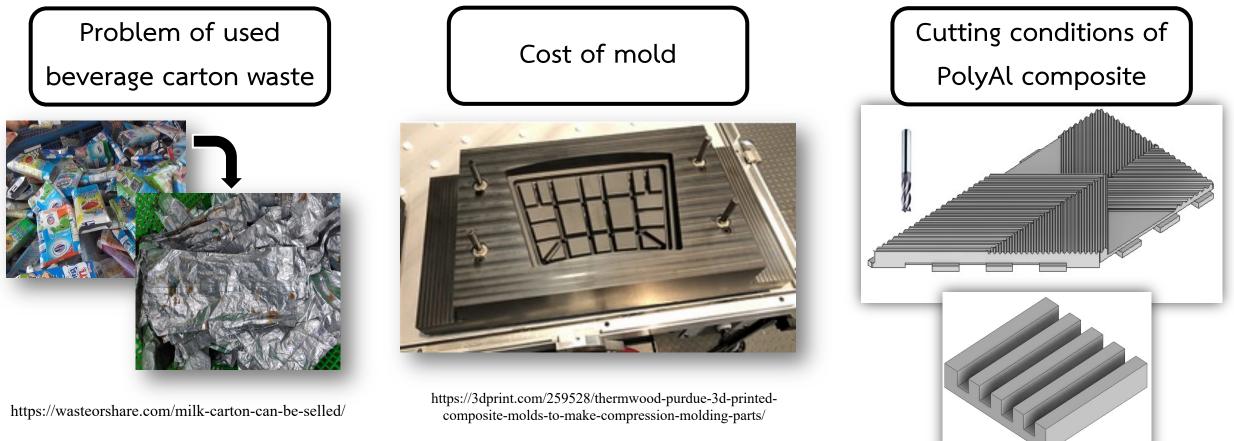


MACHINING OF POLYETHELENE-ALUMINUM COMPOSITE FROM USED BEVERAGE CARTON WASTE BY MILLING USING HIGH-SPEED CUTTING TOOLS

Sanya Kumjing¹, Watthanaphon Cheewawuttipong², Jirawat Jai-u³, Supaaek Pramoonmak⁴, Boonsong Chongkolnee⁴, Ponlapath Tipboonsri4 and Anin Memon⁴

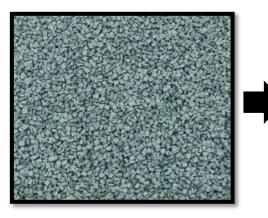
1 Department of Tool and Die Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand.

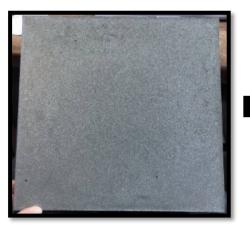

2 Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya, Songkhla, Thailand.

3 Department of Industrial Engineering, Faculty of Industrial Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand.

4 Department of Industrial Engineering, Faculty of Engineering Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand.

Keywords: Polyethylene-aluminum composite, used beverage carton waste, Machining of PolyAl composite

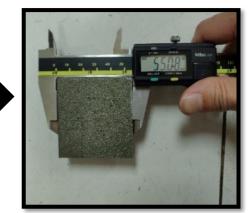



The problem of beverage carton waste, this research would like to use waste from beverage carton waste for making several products, but it found that mold for injection process is high cost. Therefore, it interests to use PolyAl composite for machining process. This research will focus on cutting condition of PolyAl composite

Methodology

PolyAl Pellets

PolyAl Composite


Two roll mill

Preparation of specimens

Compression molding

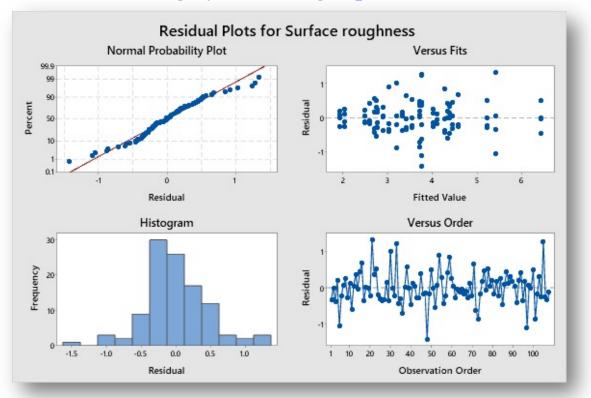
Specimen for Ra measuring

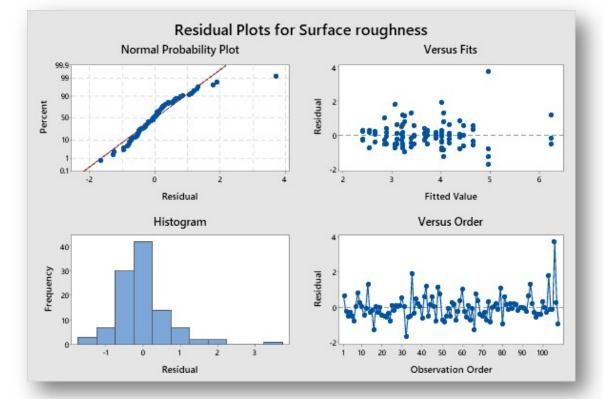
Surface roughness tester

Machining position by CNC milling machine

Methodology

Cutting conditions for machining


spindle speed (rpm)	500	1000	1500		
Feed rate (mm/min)	400	400 1000			
depth of cut (mm)	1	3	6		
cutting tools	high speed steel 2 flute, diameter of 6 mm				
spindle speed (rpm)	500	1000	1500		
Feed rate (mm/min)	400	1000	1600		
depth of cut (mm)	1	3	6		
cutting tools	high speed steel 4 flute, diameter of 6 mm				



Results

The machining by 2 flute high speed end mill

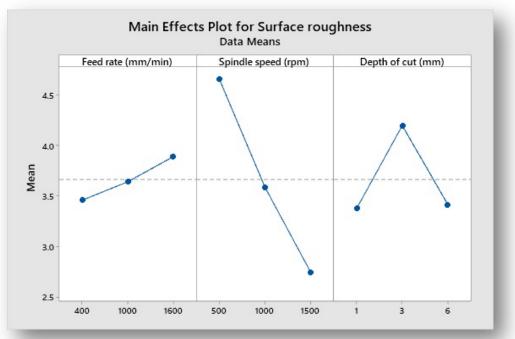
The machining by 4 flute high speed end mill

These figures, they found that the results were normal distribution, and variances were constant.

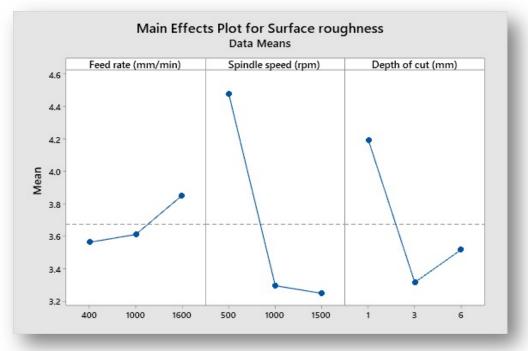
Results

The machining by 2 flute high speed end mill

DF	Adj SS	Adj MS	F- value	P- value
2	3.368	1.684	5.98	0.004
2	66.381	33.191	117.79	0.000
2	15.371	7.686	27.27	0.000
4	4.832	1.208	4.29	0.003
4	4.582	1.145	4.07	0.005
4	4.619	1.154	4.10	0.004
8	15.904	1.988	7.06	0.000
81	22.824			
107	137.88 1			
	2 2 4 4 4 8 81	2 3.368 2 66.381 2 15.371 4 4.832 4 4.582 4 4.619 8 15.904 81 22.824 107 137.88	MS 2 3.368 1.684 2 66.381 33.191 2 15.371 7.686 4 4.832 1.208 4 4.582 1.145 4 4.619 1.154 8 15.904 1.988 81 22.824 107	MS value 2 3.368 1.684 5.98 2 66.381 33.191 117.79 2 15.371 7.686 27.27 4 4.832 1.208 4.29 4 4.582 1.145 4.07 4 4.619 1.154 4.10 8 15.904 1.988 7.06 81 22.824 1 137.88


The machining by 4 flute high speed end mill

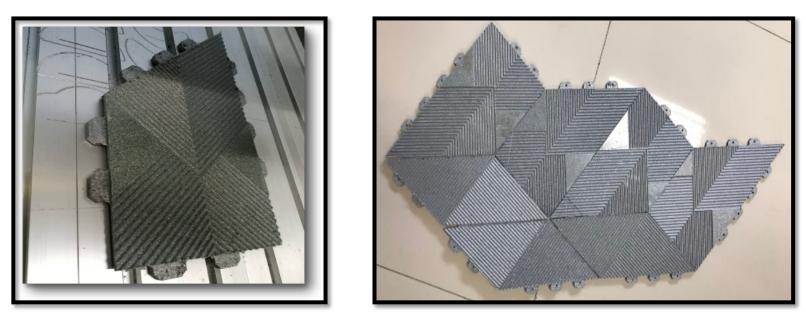
Source	DF	Adj	Adj	F-	P-
		SS	MŠ	value	value
Feed rate (mm/min)	2	1.723	0.861	1.29	0.282
Spindle speed (rpm)	2	35.126	17.563	26.24	0.000
Depth of cut (mm)	2	15.156	7.578	11.32	0.000
Feed rate (mm/min)* Spindle speed (rpm)	4	2.048	0.512	0.77	0.551
Feed rate (mm/min)* Depth of cut (mm)	4	1.619	0.404	0.60	0.660
Spindle speed (rpm)* Depth of cut (mm)	4	6.575	1.644	2.46	0.052
Feed rate (mm/min)* Spindle speed (rpm)* Depth of	8	11.436	1.430	2.14	0.041
cut (mm) Error	81	54.207	0.670		
Total	107	127.89			
S = 0.818 R-Sq = 57.61% R-Sq(adj) = 44.01%					


Results

The machining by 2 flute high speed end mill

The optimal conditions for machining

The machining by 4 flute high speed end mill



High speed end mill	Feed rate(mm/min)	Spindle speed(rpm)	Depth of cut (mm)	R _a
2 flute	400	1500	1	1.91
4 flute	1000	1500	3	2.38

CONCLUSIONS

The results, every conditions can be machining of PolyAL. The value of R_a increased with an increase of feed rate, R_a value decreased with an increase of spindle speed, and R_a value had a tendency to decrease at high depth of cut. In addition, R_a value of machining by 2 flutes end mill was better R_a value than of machining by 4 flutes

3D wall from PolyAl composite by optimal condition