

Evaluation of asymmetric wrinkles using high frequency eddy current and ultrasonic non-destructive testing techniques

Qiuji Yi, Paul Wilcox and Robert Hughes

20/01/2022

Background and motivation

- Eddy currents are excellent for <u>non-contact near-surface detection</u>.
- The first major challenge is the emulation of practical CFRP structure with local heterogeneity caused by the distribution of fibre and resin for optimisation of high-frequency ECT inspections.

Complex wrinkles/Waviness

high-resolution ECT image of unidirectional CFRP structure

University of BRISTOL

$$\mathbf{Methodology-spatial 'modulation'}_{\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} = \begin{pmatrix} \sigma_{L} \cos^{2} \theta_{f} + \sigma_{T} \sin^{2} \theta_{f} & \frac{\sigma_{L} - \sigma_{T}}{2} \sin 2 \theta_{f} & 0 \\ \frac{\sigma_{L} - \sigma_{T}}{2} \sin 2 \theta_{f} & \sigma_{L} \sin^{2} \theta_{f} + \sigma_{T} \cos^{2} \theta_{f} & 0 \\ 0 & 0 & \sigma_{cp} \end{pmatrix}$$

The idea is to include a spatial 'modulation' to the conductivity perpendicular to the fibre direction to represent different fibre tows since this modulation enables fibre orientation to be imaged with EC.

Methodology- virtual scanning

numerical noise due to the mesh, which was of a similar order n_a to the size of the variations due to simulated fibres. ^{h}Z Air domain Air domain Coil Coil Current source $\theta_f = 0$ Height **CFRP** Interface $|n_c|$ (a) (b) Length Scan position $(x,y)=(x_n,0)$ Scan position (x,y)=(0,0) Scan position (x,y)=(xn,ym)

FEM diagram

Illustration of moving parameter space

'FR

The "moving parameter space" method avoids the problem of

The virtual scanning is implemented by fixing the coil and geometry's position while adding an offset to the parameter space $\sigma'_{ij}(x, y, \theta_f)$ so that the scanning in X and Y axis can be emulated by $\sigma'_{ij}(x + x_n, y + y_m, \theta_f)$, where x_n and y_m are the scanning coordinates. This is 5x faster than 'point-by-point' scan.

University of BRISTOL

ton EXE

Engineering and Physical Sciences Research Council

Methodology-interface effect

Current density distribution at the surfaces and interfaces in 3-layer sample with [90/-45/45] layup: (a) top surface (90°), (b) interface (90°/-45°), (c) interface $(-45^{\circ}/45^{\circ})$, (d) bottom layer (45°).

University of BRISTOL

Composite laminate Cheng, Jun, et al. NDT of

$$\boldsymbol{n_c} \times (\boldsymbol{E}_2 - \boldsymbol{E}_1) = \boldsymbol{0} \Rightarrow \boldsymbol{E}_{2\tau} = \boldsymbol{E}_{1\tau},$$

where nc is the normal vector on the interface boundary, and the subscript τ represents the tangential component.

In-plane E can circulate in the two principal fibre directions to form a closed loop, greatly reducing the resistive loss and significantly increasing the current density

Samples and experimental ECT system

(A 	[] 20 mm × 20]]]]]]]]]]]]]]]]]]]	mm 38 00	3		1306 BBH-2516
#	Orientations	Structure	No. Layers	Thicknes s (mm)	Material
001	[0]	Unidirectional	32	4	IM7 8552 Prepreg
002	[0/90]	Bi-directional	32	4	IM7 8552 Prepreg
003	[90/45/90/-45]	Reflected	32	4	IM7 8552 Prepreg
004	[0/45/90/-45]	Repeated	32	4	IM7 8552 Prepreg

Southampton

 $\Delta L = L'_0 - L_0 = -\Delta R \frac{L_e}{R_o}.$

Results-Modelling vs. Expt.

A. CORR2(REAL)	001_E	002_ E	003_E	004_E
001_S	<u>0.37</u>	0.06	0.1	-0.08
002_S	0.26	<u>0.72</u>	0.08	-0.15
003_S	0.16	-0.17	<u>0.48</u>	0.13
004_S	0.17	0.04	0.12	<u>0.38</u>

B. CORR2(IMAG.)	001_E	002_E	003_E	004_E
001_S	<u>0.42</u>	-0.14	-0.11	0.08
002_S	-0.33	<u>0.88</u>	0.39	0.17
003_S	-0.2	0.12	<u>0.51</u>	0.09
004_S	-0.16	-0.06	0.12	<u>0.59</u>

C. CORR2 (Real vs.IMAG.)	001_S.Im	002_S.Im	003_S.Im	004_S.Im
001_S .Re	<u>-0.98</u>	-0.4	-0.85	-0.13
002_S .Re	-0.56	<u>-0.96</u>	-0.49	-0.77
003_S .Re	-0.71	-0.29	<u>-0.95</u>	-0.38
004_S .Re	-0.22	-0.79	-0.45	<u> </u>
				1

Results-orientation analysis in modelling and experiments

Virtual misalignment detection

Southampton

Results-resistivity loss(skin-depth) in multi-layer structure

Current density in simulated structures

The traditional skin depth

 $|J| = J_0 e^{-d/\delta_e}$

- One of the critical parameters for eddy current testing is the skin depth.
- To do this, a finer mesh is used in the depth direction and the current density norm is averaged on 4mm radius planes.
- The mesh is scaled to 9 tetrahedral elements in each layer to provide 33 planes over a 0.5 mm depth range with a step of 0.0156 mm.

Southampto

Results-resistivity loss(skin-depth) in multi-layer structure

With a rapidly oscillating current density, the traditional skin depth is random and doesn't have the same physical meaning as in a homogeneous sample

'FR

- To demonstrate the workflow of using both high frequency eddy current and ultrasound on the same defects and how to quantitively compare their detectability and performance.
- The wrinkle geometries can be challenging to be evaluated due to it is related with multiple parameters such as asymmetry, wavelength, and amplitude affecting the mechanical performance of the structure

Engineering and Physical Sciences Research Council

Methodology-high frequency eddy current

Wrinkle skew calculation method for characterisation

Should be independent of number of points considered – therefore should be performed on thresholded data (so that number of zeros outside thresholded region does not affect result)

Using following (applied separately to real and imag parts of data, z_i)

skew =
$$\sqrt[3]{\frac{\sum_{i}(x_{i}-\mu_{x})^{3}z_{i}}{\sum_{i}z_{i}}}, \mu_{x} = \frac{\sum_{i}x_{i}z_{i}}{\sum_{i}z_{i}}$$

Methodology-Ultrasound

Results analysis-obtaining ground truth

University of BRISTOL

Southampton

Results analysis-eddy current raw data

Results analysis-eddy current data analysis

Results analysis-UT raw data

spatial axis X[mm]

Southampton

Results analysis-UT data analysis

Results analysis-UT compare with EC

Results analysis- "Fusing" UT with EC

- UT and EC have the potential to be merged to achieve improved characterisation of wrinkle defects.
- The average EC signal from all samples shows decent agreement in most cases with the UT generated images.
- EC allows better detection of near-surface defects (G1) and better detection of asymmetry.
- Still to be explored:
 - Robust co-location, co-orientation, and merging of signals into singular wrinkle description.
 - Viability of data fusion for more complex defect states (i.e. requiring separation of defect type signatures).

University of BRISTOL

Southampto

The opportunity for TSA

- Thermo-elastic Stress Analysis (TSA) offers a flexible approach to identify regions of interest within a structure.
- For the "simple" case of the asymmetric wrinkle coupons, TSA with some processing appears able to detect the presence of wrinkles from both sides even for the smallest deviation (1 ply thickness).
- Basic analysis also show good match for wavelength (≈10mm) and further analysis is ongoing.
- Hence, opportunity for rough defect localization, and indication of size and "severity" on global scale appears very promising.

0.04

0.02

FR

G8 S2 – Tool Side

10

20

30

• Eddy current modelling

- The proposed modelling advance offers improved computation speeds and the potential to simulate the eddycurrent inspection of anisotropic structure as well as facilitating the <u>virtual design</u> and <u>optimisation of high-</u> <u>frequency ECT inspections</u> in the future.
- The angular distribution analysis using <u>Radon transform (RT) and 2D-FFT</u> has also demonstrated its capability to automatically validate models and characterise <u>ply orientations</u> from both simulated and experimental complex ECT scan data.
- A new parameter referred to as the <u>interface skin-depth</u> is defined and calculated based on the decay in current density at the interfaces and used to determine an approximate effective conductivity of the <u>layered structures</u>.

• Wrinkle NDT&E

- The wrinkle profiles are successfully extracted from three systems including high frequency data, UT data and micrographs.
- The probability of detection study reveals the merits of UT for detecting the winkle amplitude while EC is more sensitive to the asymmetry, due to that winkle asymmetry contributes more to electrical properties change than that of stiffness.

