

Microwave Absorbing Properties of Heat Reduced Graphene Oxide/Fe₃O₄/Epoxy Hybrid Composites

Hsien-Kuang Liu¹, Ruey-Bin Yang², and Y. S. Wu³

^{1,3}Department of Mechanical and Computer Aided Engineering, ²Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 407, **Taiwan, R.O.C.**

07/30~08/04/2023 Presented at TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

Outline

Introduction

- Literature reviews
- Experimental procedures
- Results and discussion
- Conclusions

Introduction

a. Prefaceb. Objectives

a. Preface

Military

Literature reviews

Microwave absorbing applications (1/4)

◆ Ma et al., 2013

- SDS and SDBS were mixed with GO and Fe₃O₄ and high temperature reduced as RGO/Fe₃O₄ by flowing hydrogen and Ar.
- ♦ For 2 mm thickness specimen, R.L. of RGO is only -10 dB; while R.L. of RGO/Fe₃O₄ is -22.2 dB at 17.3 GHz

Microwave absorbing applications (2/4)

- ♦ Yeh et al., 2014
- GNS/Fe₃O₄/SEBS composites were fabricated by heat reduction and chemical grafted methods.
- ♦ 3 mm thick heat reduced 20% GNS/Fe₃O₄ composites have -27.65 dB R.L. at 9.36 GHz.

Microwave absorbing applications (3/4)

- ◆ Liu et al., 2018
- CVD was used to fabricate EG/Fe/Fe₃O₄ composites.
- EG/Fe/Fe₃O₄ achieved better R.L. than raw EG.
- ♦ The 2.4 mm thick composite has R.L. of -41.6 dB at 7.8 GHz.

Microwave absorbing applications (4/4)

ε'

◆ HK Liu, 2017

- ◆ HRGO was achieved by heat reduction method and complex permittivity is proportional to temperature.
- With same weight fraction, ball milled FCl/RGO has better complex permittivity and R.L. than those of raw FCl/RGO.

Experimental procedures

- 1. Fabrication of HRGO
- 2. Fabrication of radar absorbing nanocomposites
- 3. Measurement of electromagnetic properties

Fabrication of HRGO

- 1. 5-gram GO was placed into Lindberg Blue/M UP-150 tube furnace
- 2. Apply vacuum, and keep nitrogen flow in the furnace
- 3. Heat the GO at 1000°C for 1 hr and cool

Fabrication of radar absorbing nanocomposites

Composition of nanocomposites

Material Type	HRGO	Fe ₃ O ₄	Ероху
	1 wt%	-	99 wt%
1 v HRGO	2 wt%	-	98 wt%
	3 wt%	-	97 wt%
	-	40 wt%	
	0.3 wt%	39.7 wt%	
2 • HRGO+Fe ₃ O ₄	0.5 wt%	39.5 wt%	60 wt%
	0.7 wt%	39.3 wt%	
	0.9 wt%	39.1 wt%	

Measurement of electromagnetic properties

Materials Measurement System

- Using software Keysight Materials N1500A
- 2. Calibrate Port 1 and Port 2 on MMS
- 3. Calibrate using air and teflon
- 4. Measurement

(Keysight 85051-60008)

Coaxial waveguide MMS

Results and discussion

- 1. Absorbing performance of HRGO/epoxy nanocomposites
- 2. Absorbing performance of HRGO/ Fe₃O₄/epoxy nanocomposites
- 3. Microstructure analysis

1. Absorbing performance of HRGO/epoxy nanocomposites

Thickness effect on R.L. simulation of HRGO (3 wt%)/epoxy nanocomposites

Thickness (mm)	Frequency (GHz)	R.L. (dB)	-10 dB bandwidth (GHz)
1	-	-	-
1.5	15.3	-17.70	3.0
2	11.2	-18.17	2.4
2.5	9.2	-19.24	2.2
3	7.6	-18.50	1.8

Effect of HRGO weight fraction on R.L. of 3 mm thick HRGO/epoxy

2. Microwave absorbing performance of HRGO/ Fe₃O₄/epoxy annocomposites

Electromagnetic properties of HRGO/Fe₃O₄/epoxy (1/2)

HRGO/Fe₃O₄ weight fraction effect on complex permittivity ε '

HRGO/Fe₃O₄ weight fraction effect on complex permittivity ε "

Electromagnetic properties of HRGO/Fe₃O₄/epoxy (2/2)

 $HRGO/Fe_3O_4$ weight fraction effect on complex permeability μ '

HRGO/Fe₃O₄ weight fraction effect on complex permeability μ "

R.L. simulation of HRGO/Fe₃O₄/epoxy (1/5)

Thickness (mm)	Frequency (GHz)	R.L. (dB)	–10 dB bandwidth (GHz)
1	-	-	-
2	-	-	-
3	10.9	-5.98	-

Thickness effect on R.L. of $Fe_3O_4(40 \text{ wt\%})/epoxy$

R.L. simulation of HRGO/Fe₃O₄/epoxy (2/5)

Thickness (mm)	Frequency (GHz)	R.L. (dB)	–10 dB bandwidth (GHz)
1	-	-	-
2	-	-	-
3	10.7	-9.08	_

Thickness effect on R.L. of HRGO (0.3 wt%)/Fe₃O₄ (39.7 wt%)/epoxy

R.L. simulation of HRGO/Fe₃O₄/epoxy (3/5)

Thickness (mm)	Frequency (GHz)	R.L. (dB)	–10 dB bandwidth (GHz)
1	-	-	-
2	15.1	-7.15	-
3	8.9	-12.44	1.2

Thickness effect on R.L. of HRGO (0.5 wt%)/Fe₃O₄ (39.5 wt%)/epoxy

R.L. simulation of HRGO/Fe₃O₄/epoxy (4/5)

Thickness (mm)	Frequency (GHz)	R.L. (dB)	-10 dB bandwidth (GHz)
1	-	-	-
2	13.3	-10	-
3	8.7	-17.29	2.1

Thickness effect on R.L. of HRGO (0.7 wt%)/Fe₃O₄ (39.3 wt%)/epoxy

R.L. simulation of HRGO/Fe₃O₄/epoxy (5/5)

Thickness (mm)	Frequency (GHz)	R.L. (dB)	-10 dB bandwidth (GHz)
1	-	-	-
2	12.6	-16.36	2.7
2.5	10.1	-21.35	2.7
3	8.2	-29.74	2.7

Thickness effect on R.L. of HRGO (0.9 wt%)/Fe₃O₄ (39.1 wt%)/epoxy

Weight fraction effect on R.L. of HRGO/Fe₃O₄/epoxy (1/3)

Weight fraction effect on R.L. of HRGO/Fe₃O₄/epoxy (2/3)

2 mm thick

Weight fraction effect on R.L. of HRGO/Fe₃O₄/epoxy (3/3)

Simulation and experimental results comparison

RLs of 3 mm thick HRGO (0.9 wt%)/Fe₃O₄ (39.1 wt%)/epoxy

3. Microstructure analysis

XRD analysis of GO

XRD analysis of HRGO

SEM of HRGO

 5×10^4 times

SEM of Fe₃O₄ (40 wt%)/epoxy

5000 times

500 times

SEM of HRGO (0.3 wt%)/Fe₃O₄ (39.7 wt%)/epoxy

500 times

5000 times

 10^4 times

SEM of HRGO (0.9 wt%)/Fe₃O₄ (39.1 wt%)/epoxy

500 times

5000 times

 1×10^4 times

Conclusions

Conclusions

- 1. For the HRGO/Fe₃O₄/epoxy nanocomposite, complex permittivity and reflection loss increase with the increase of HRGO weight fraction.
- 3 mm thick HRGO (0.9 wt%)/Fe₃O₄ (39.1 wt%)/epoxy has best reflection loss of -29.74 dB at 8.2 GHz and bandwidth of 2.7 GHz; while for 3 mm thick HRGO (3.0 wt%)/ epoxy, the RL -18.5 dB is lower and bandwidth is 1.8 GHz.
- 3. Correlation between simulation and experimental results is close indicating that the simulation is correct.

Thank you for your attention