Delamination Toughening of Composites Using Different Types Of Tufting Materials

Presented by

Manatsawee(San) Limprapuwiwattana

PhD Candidate, **RMIT University**, Australia E: <u>manatsawee.lim@gmail.com</u>

Supervisory Team:

Anil Ravindran¹, Chun Wang², Adrian Mouritz¹, Raj Ladani¹

¹ Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia

² University of New South Wales (UNSW), Sydney, Australia

What's next....

Introduction – 3D Reinforced Composites

ICCM 23 Protection of the state of the stat

- Delamination from
 - Impact damage
 - Fatigue loading
 - Overloading
- Through the thickness thermal and electrical conductivity

Non-destructive testing (NDT) technique

https://www.aerospacetestinginternational.com/features/introduction-to-non-destructive-testing.html

Boeing 787 Dreamliner Stringer problem

https://kirill-guevara.livejournal.com/117050.html

Delamination damage on T-joint composites

https://www.engineerlive.com/content/composites-aircraft-improve-performance-there-are-challenges

Lightning strike damage

https://www.boeing.com/commercial/aeromagazine/articles/2012_q4/4/

Methodology – Tufted Composites

Tufted composites

- Access required on one side only
- Can be used with fibrous based

material and metal filament

- Can be automated
- Flexible process parameters

(Tufting direction, embedded

length, embedded angle, pattern)

Methodology – Tufted Composites

Shape Memory Alloy (SMA) wires

- Made of Nickel(Ni) and Titanium(Ti)
- Thermal Activated Shape Memory Alloy (SMA) wires
- Unique properties for many applications
 - Strain gauge
 - Damage detection
 - Shape morphing
 - Self-healing
 - Damping

Results:

- Structural and Mechanical properties improvement
 - Delamination resistance
 - Fatigue resistance
- Multifunctional Properties engendered

Benchmarking against Conventional Tufting materials

- Carbon and
- Kevlar
- Metal filament:
- Copper filament

Results and Discussions

Mode I Interlaminar Fracture Toughness of Aramid, Carbon, Copper and SMA Tufts

Double Cantilever Beam (DCB) test – ASTM D5528 standard

Mode I Interlaminar Fracture Toughness

Tufted Composites

- 200 gsm Plain Woven Composites
- Tufting materials: Aramid, Carbon, Copper and SMA wire
- %Areal content of 0.30%
- Vacuum assisted resin infusion

Methodology

• Mode I Interlaminar Fracture toughness

(Double Cantilever Beam (DCB)) test – ASTM D5528

Control sample

- No tufts inside
- Steady state value of 0.42 kJ/m²

ICCM 23 INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS BELFAST 2023 30 JULY - 4 AUGUST

8

CCM 23

SMA tufted sample

- Steady state value of 4.34 kJ/m²
- ~ 9 folds improvement
- Large bridging scale observed

Aramid tufted sample

- Steady state value of 7.96 kJ/m²
- ~ 18 folds improvement
- Highest improvement observed

Toughening Mechanism due to "Large scale-bridging zone"

- Increased required force to propagate the crack
- Depending on pull-out mechanism of the tuft type SMA showing largest amount of pull out

CCM 23

Finite Element Modelling

Using spring element (built-in Abaqus feature)

to represent tufts

Modified spring law using traction load law as a

guide

٠

Results and Discussions

Delamination Crack Closure of SMA tufts using large(0.25 mm) and small (0.15 mm) SMA wires at different propagation length

Delamination Crack Closure of SMA Tufts

- Using environmental chamber on Instron 50.1 kN machine
- Sample was tufted with 0.15 and 0.25 mm SMA as tufts at 0.3% areal content
- SMA wire transition temperature: 80 °C
- DIC Was used
- Mode I delamination crack closure
 - Efficacy at different propagation lengths
 - Efficacy test at fixed propagation length (4 cycles test)

Delamination Crack Closure of SMA Tufts

Delamination Crack Closure of SMA Tufts

ICCM 23

Publication

W. Khor, A. R. Ravindran, F. Ciampa, R. B. Ladani, M. Limprapuwiwattana, P. Whitton, A.D. Foreman, C. Meeks, A. Steele, T. Cooper, A. Rider, A.P. Mouritz (2023), "Improving The Damage Tolerance Of Composite T-Joints Using Shape Memory Alloy Tufts", Composites Part A: Applied Science and Manufacturing 2023: p.107474

Acknowledgement

- In memory of Distinguished Professor Adrian Mouritz
- Supervisory team
 - Dr Anil Ravindran,
 - Professor Chun Wang,
 - Dr Raj Ladani

Presented by

Manatsawee (San) Limprapuwiwattana **RMIT University**, Melbourne, Australia LinkedIn: <u>https://www.linkedin.com/in/sanlim/</u>

