

# CHARACTERIZATION OF DRIVING MECHANISMS INVOLVED IN DECONSOLIDATION OF THERMOPLASTIC COMPOSITE LAMINATES

Luc Amedewovo, <u>Arthur Levy</u>, Laurent Orgeas, Basile de Parscau du Plessix, Steven Le Corre

arthur.levy@univ-nantes.fr

IN Nantes ✔ Université







#### **Today's challenges**

#### Increase part complexity



Pylone MATCH project



Boeing assembly line

- Intricate / thick parts
- Large parts
- Assembly

#### Cheap / sustainable



www.sabca.be



- Fast and efficient cycles
- Out-of-autoclave
- Defect free

**TP** composites

#### **TPC** manufacturing steps



#### Deconsolidation





GF/PEI resistance welding

[Shi et al. 15]

#### Thermo stamping



#### State of the art hypothesis







# Understand the deconsolidation phenomenon, need for characterization



#### **Outlines**





# Laminate preparation

#### Material

CF/PEKK (Toray Composites) 348 \* 348 mm\*2,90 mm 16 plies UD, 0°



**Pre-conditionning** 

Drying 180°C / 72h

#### 1 - Material

#### 2 - Microstructural in-situ analysis

# 3 - Macroscopic parametric study









#### In situ Tomography Observation



#### **Test Matrix**

| # | Preconditioning                                | Stacking<br>sequence | Heating type | Counter<br>pressure |
|---|------------------------------------------------|----------------------|--------------|---------------------|
| 1 | Water immersed (WI)<br>3 months @ 0.1 wt. %H2O | UD                   | Bi-lateral   | -                   |
| 2 | Dried – 72h@180°C                              | UD                   | Bi-lateral   | -                   |
| 3 | WI                                             | СР                   | Bi-lateral   | 0.1 MPa             |
| 4 | WI                                             | UD                   | Uni-lateral  | 0.05 MPa            |



#### **3D fields**

• Test 2: Dried / UD / Bi-lateral









# Processing

#### **Porosity content**





 $ln\left(\frac{current\ thickness}{initial\ thickness}\right)$ 

ICCM 23 – Belfast UK

# **Strain and porosity**

• Test 2: Dried / UD / Bi-lateral



# Processing

#### • Pore size

1. Pore fitting with Oriented Bounding Box (OBB) **pore length = a** 

**3. Volume fraction** =  $\frac{\text{Pore class volume}}{\text{Total pore volume}} \times 100$ 

2. Pore classification by length

Length  $\leq$  0.1 mm 0.1 < Length  $\leq$  1 mm Length > 1 mm







# 1 - Material 2 - Microstructural in-situ analysis Image: State of the state of th

# 3 - Macroscopic parametric study







#### [Amedewovo et al. 23]

# **CODEC** bench



# **Test matrix**

| Init     | ial laminate                         | Deconsolidation                        |                                    |  |
|----------|--------------------------------------|----------------------------------------|------------------------------------|--|
| Process  | Conditionning                        | Counterpressure                        | Heating rate                       |  |
| HP<br>VB | Dried<br>Ambiant storage<br>Immersed | No pressure<br>1 bar<br>3 bar<br>5 bar | 5∘ C/min<br>10∘ C/min<br>60∘ C/min |  |



#### **Results**

Press consolidated, Dried, no pressure, 10°C/min



Time (min)



#### **Deconsolidation graph**





#### **Maximum deconsolidation strain**



## After experiments micrographs

#### UD- HP - Dried (DS) 1 week@180°C



#### UD - HP - Annealed (AN) 48h@250°C



#### UD - HP - Annealed (AN) 48h@250°C + Rehumidifying 1 week 0.04 wt. %H<sub>2</sub>O



# Conclusions



# Acknowldegement

- PERFORM project led by IRT Jules Verne
- PERFORM partners Airbus, Safran, Latecoere, Stelia Aerospace, Clayens NP, Naval Group and Faurecia.
- Arnaud Arrivé and Julien Aubril : CODEC bench development and fabrication
- Nicolas Lefevre for the Synchrotron bench development
- AFM for co-funding my travel

**I**<sup>I</sup>EN





# CHARACTERIZATION OF DRIVING MECHANISMS INVOLVED IN DECONSOLIDATION OF THERMOPLASTIC COMPOSITE LAMINATES

Luc Amedewovo, <u>Arthur Levy</u>, Laurent Orgeas, Basile de Parscau du Plessix, Steven Le Corre

arthur.levy@univ-nantes.fr

IN Nantes ✔ Université





