

Multifunctional Hybrid Composites with Gradient Interphase

PR. DR. PATRICK C. LEE, PEng

NELLO D. SANSONE¹, JIYOUNG JUNG³, PETER SERLES², DR. RAFAELA AGUIAR PR. DR. TOBIN FILLETER², PR. DR. SEUNGHWA RYU³

¹ Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical & Industrial Engineering, University Of Toronto
² Nanomechanics and Materials Lab (NanoM²), Department of Mechanical & Industrial Engineering, University Of Toronto
³ Mechanics & Materials Modeling Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)

COMPOSITE APPROACHES

Micro-Reinforcement "Traditional" Approach

- **GF-reinforced PP-based Composites** are widely used in structural applications in the automotive industry.
- Challenges: High Fiber Loadings (30 60 wt.%), increase in density, decrease in melt flow rate (MFR), increase in brittleness, and reduced processability.

Nano-Reinforcement "Modern" Approach

- Graphene Nanoplatelets (GnPs) have exceptional mechanical, electrical, and thermal properties, allowing them to be used in a variety of industries.
- Challenges: Agglomerated GnPs create areas of high-stress concentration that initiate composite failure.

Hybrid-Reinforcement "Avant-garde" Approach

- Hybrid composites have become increasingly popular for a variety of engineering applications, due to their enhanced properties compared to traditional biphasic composites.
- Significant Advantage: Originates from the synergistic effect.

HIERARCHICAL HYBRID APPROACH

- A hierarchically-structured hybrid composite, consist of two reinforcing materials of different length scales (i.e., micro-sized and nano-sized) within one matrix material.
- The interfacial interactions between the two reinforcing materials within the hybrid composites can consist of:
 - **1.** Physical Interactions
 - 2. Electrostatic Interactions
 - **3.** Chemical Interactions
- Generally, hierarchically-structured fibrous reinforcements, that are chemically bonded (or grafted) and/or electrostatically attached, are known to provide greater mechanical properties and functionalities, compared to those that only possess physical interactions.
 - Tailoring Mechanical Performance
 - Tailoring Electrical/Thermal Conductivity Performance (EMI Shielding)

HIERARCHICAL STRUCTURE ASSEMBLY

ntensity (a.u.

How can we confirm Self-Assembly?

- Electrostatic Interactions:
 - Zeta Potential Measurements
- Chemical Interactions:
 - Fourier-Transform Infrared Spectroscopy (FTIR)
 - X-Ray Photoelectron Spectroscopy (XPS)

Sansone et al. (2022), ACS Applied Materials & Interfaces

X-Ray Photoelectron Spectroscopy

HIERARCHICAL CRYSTALLINE MICROSTRUCTURE

Effect of β -Crystal Formation

- The $(300)_{\beta}$ crystallographic plane is indicative of β -crystals within the crystalline microstructure.
- β-crystals provide superior mechanical properties: toughness, tensile strength, elongation at break, and impact strength.
- Turner-Jones et al. Method:

$$\mathcal{K}_{\beta} = \frac{H_{\beta(300)}}{H_{\beta(300)} + H_{\alpha(110)} + H_{\alpha(040)} + H_{\alpha(130)}} \times 100\%$$

- **Biphasic PP/GF Composites:** \mathcal{K}_{β} is constant at ~ 4%, with < 30 wt.% GF. Composites with > 30 wt.% GF decreased with increasing concentration.
- **Biphasic PP/GnP Composites:** optimum formation of \mathcal{K}_{β} found in PPGnP0.5, maximum of 6%.
- Hybrid PP/GnP/GF Composites: \mathcal{K}_{β} decreases from ~ 16% as the concentration of GF increases to $\sim 9\%$.

Intensity

HIERARCHICAL CRYSTALLINE MICROSTRUCTURE

Effect of Trans-crystallization

- Crystallographic plane $(002)_{GnP}$ increases exponentially, as the GnP content increases, along with:
 - Increase in $(040)_{\alpha}$
 - Decrease in $(110)_{\alpha}$
- The promotion of trans-crystallization (i.e., the effect of the reinforcements to induce epitaxial growth) is quantified by: $I_{(040)\alpha}/I_{(110)\alpha}$
 - Neat PP: 1.28
 - o PPGnP0.5: 7.92
 - PPGF10: 1.25
 - PPGnP0.5GF10: 3.18
- Therefore, the successful formation of trans-crystals within the hybrid composites promotes load transfer from the PP matrix to the hierarchically structured reinforcement system.

6

MECHANICAL PROPERTIES - TENSILE STRENGTH

- The Specific Tensile Strength of the hybrid PP/GnP/GF composites, containing < 1 wt. % GnP, perform better than the corresponding biphasic composites with the same concentration of GF.
- An optimum concentration of GnP is observed in the hybrid composites with 0.5 wt. % GnP, yielding the best tensile strengths for all concentrations of GF.
- This behaviour is attributed to the synergistic effect generated between the two geometrically different fillers.

- The Flexural Strength of the hybrid PP/GnP/GF composites, containing ≤ 1 wt. % GnP, perform better than the corresponding biphasic composites with the same concentration of GF.
- An optimum concentration of GnP is observed in the hybrid composites with 0.5 wt. % GnP, yielding the best flexural strengths for all concentrations of GF.
- This behaviour is attributed to the synergistic effect generated between the two geometrically different fillers.

TENSILE MECHANICAL PROPERTIES

- This Material Selection Chart compares the Specific Tensile Modulus versus Specific Tensile Strength of PP composites published in literature, to those manufactured in our laboratory.
- The experimental hybrid PP/GnP/GF composites have advantageous stiffness-to-weight and strength-to-weight ratios, compared to their biphasic counterparts.
- The optimum performing hybrid composite is **PPGnP0.5GF40**, with the highest specific tensile strength.

CONCLUSION

- The synergistic effect contributing to the enhanced mechanical properties has been attributed to:
 - 1. The Hierarchical Reinforcement induces a Gradient Interphase that Facilitates Load Transfer at the interface due to the Increased Degree of Trans-crystallization.
 - 2. The Superior Crystalline Microstructure with Increased Crystallinity and β -crystal Formation, enables the matrix to Absorb a Substantial Amount of Energy and Promote Stress Transfer to the reinforcements when exposed to strong mechanical forces.

Primary Candidates:

- 1. PPGnP0.5GF50 exceeded the flexural strength of PPGF60 by 3.3% while providing a 9% weight reduction.
- 2. PPGnP0.5GF40 obtained the same desirable flexural strength as PPGF60, while providing an 18% weight reduction.

ACKNOWLEDGEMENTS

Prof. Patrick C. Lee (patricklee@mie.utoronto.ca) **Postdoctoral Research Associates**

- Cheriff Azzaz
- Rafaela Aguiar
- Andrew Anstey
- Jun Lee

Graduate Students

- Anthony Tuccitto
- **Nello Sansone**
- Eric S. Kim
- Sandra Diez
- Hamidreza Akrami
- Abdullah Faysal
- Mayesha Mahmud
- AliReza Monfared
- Mahmoud Embabi
- Li Ma
- Meysam Salari
- **Jianxiang Zhao**
- Saadman Rahman
- Troy Su
- XiaWei (Xavier) Shen
- Nate Chang
- Sumaiya Farzana
- Yalda Chehrehsaz

Research Fund

AXIOM GROUP INC.

11