

TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

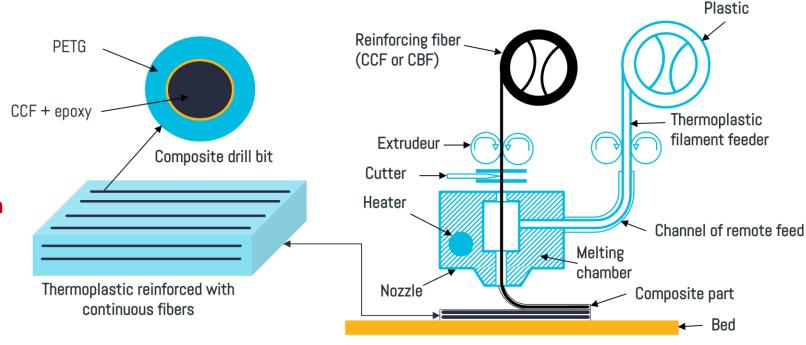
Optimization of 3D Printed Continuous Carbon Fiber Reinforced PETG Composites

Authors: Anh-Duc Le, André Chateau Akué Aséko and Benoît Cosson

Centre for Materials and Processes, IMT Nord Europe F-59500 Douai, France.

National French Research Agency

INTRODUCTION


3D printing of continuous carbon fiber reinforced thermoplastic composites (CCFRCs)

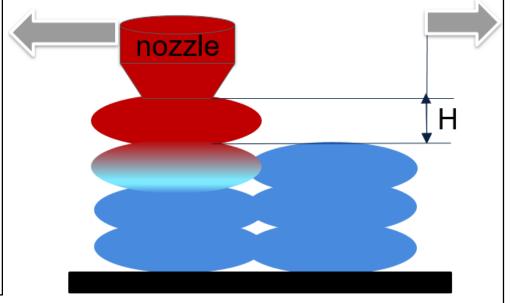
Some limitations of 3D printed CCFRCs:

- Mechanical performances remain restricted by the fiber orientation within the printing layers
- Low strength of inter-layer bonding
- Optimize the printing parameters to gain maximum mechanical performances

What criteria should be considered?

- Maximize tensile strength in the fiber direction
- Improved inter-layer bonding strength

Composite fiber co-extrusion technology

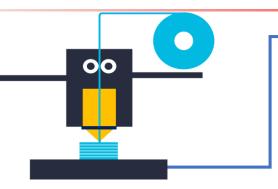

INTRODUCTION

What parameters need to be optimized?

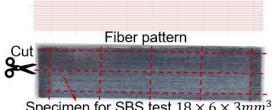
Effect of nozzle temperature

- Variation in thermal history
- Improvement of flowability
- Enhanced impregnation of CCF in matrix PETG
- Improvement of molecular mobility facilitating interdiffusion across the interface

Effect of layer height


- Modified of carbon fiber content in 3D printed composite parts
- Variation in contact pressure between nozzle and deposited material
- Reduced interlayer voids
- Enhanced interlayer bonding

METHODOLOGY

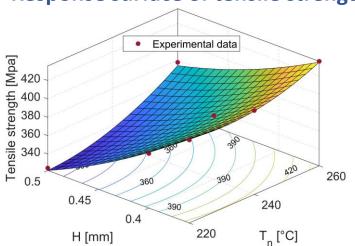


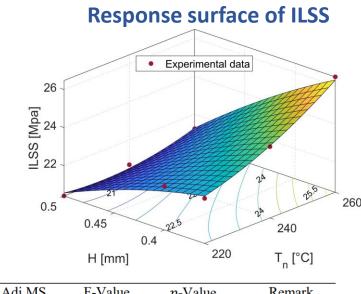
Specimen for SBS test $18 \times 6 \times 3mm^3$

- Analysis of variance (ANOVA) was performed to determine the significance of the studied parameters in order of influence on the mechanical performance.
- The response surface method (RSM) was used for the prediction of the mechanical performance as a continuous function of the studied parameters:

$$Y = \beta_0 + \sum_{i=1}^{N} \beta_i X_i + \sum_{i=1}^{N} \beta_{ii} X_i^2 + \sum_{i \neq j}^{N} \beta_{ij} X_i X_j + \varepsilon$$

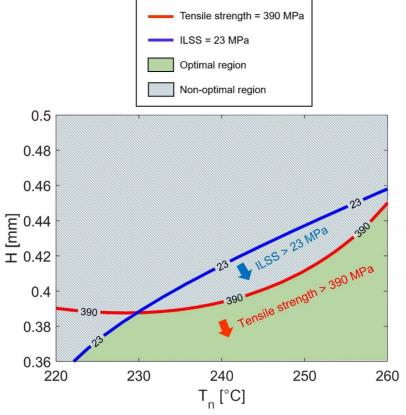
Short beam shear (SBS) test (ASTM D2344)


	Variables		Responses		
Run	$T_n(^{\circ}C)$	H(mm)	Tensile strength	ILSS	
			$\sigma(MPa)$	(MPa)	
1	220	0.36	412.61 ± 4.41	22.78 ± 1.24	
2	240	0.36	413.44 ± 12.83	24.15 ± 0.23	
3	260	0.36	435.82 ± 4.09	26.47 ± 0.53	
4	220	0.4	381.45 ± 18.59	22.71 ± 051	
5	240	0.4	391.70 ± 4.34	23.21 ± 0.60	
6	260	0.4	408.07±8.29	24.95 ± 0.35	
7	220	0.5	324.84 ± 6.33	20.41±0.23	
8	240	0.5	330.21 ± 7.91	20.70±1.06 +	
9	260	0.5	377.50 ± 20.05	21.25 ± 0.87	



RESULTS

Response surface of tensile strength



ANOVA for tensile strength

Source	DF	Adj SS	Adj MS	F-Value	<i>p</i> -Value	Remark
$T_n(^{\circ}C)$	2	6059.4	3029.7	12.61	0.004	Significant
H(mm)	2	27063.2	13531.6	56.32	< 0.001	Significant
$T_n \times H$	4	1101.1	275.3	1.15	0.367	Insignificant
Error	18	4324.7	240.3			
Total	26	38548.4				

ANOVA for **ILSS**

Source	DF	Adj SS	Adj MS	F-Value	<i>p</i> -Value	Remark
$T_n(^{\circ}C)$	2	39.953	19.9767	19.81	< 0.001	Significant
H(mm)	2	111.779	55.8895	55.41	< 0.001	Significant
$T_n \times H$	4	10.643	2.6607	2.64	0.05	Insignificant
Error	36	36.311	1.0086			
Total	44	198.686				

Design of multi-response optimization

CONCLUSIONS

- The nozzle temperature and the layer height have a significant impact on the tensile strength and the interlaminar shear strength of the 3D printed continuous carbon fiber-reinforced PETG composites.
- Optimal range of values for the nozzle temperature, and the layer height were determined satisfying the requirements for the mechanical performances of the 3D printed composites using RSM.

Do you have any question?