

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites <u>Zsófia KOVÁCS, Andrea TOLDY</u>

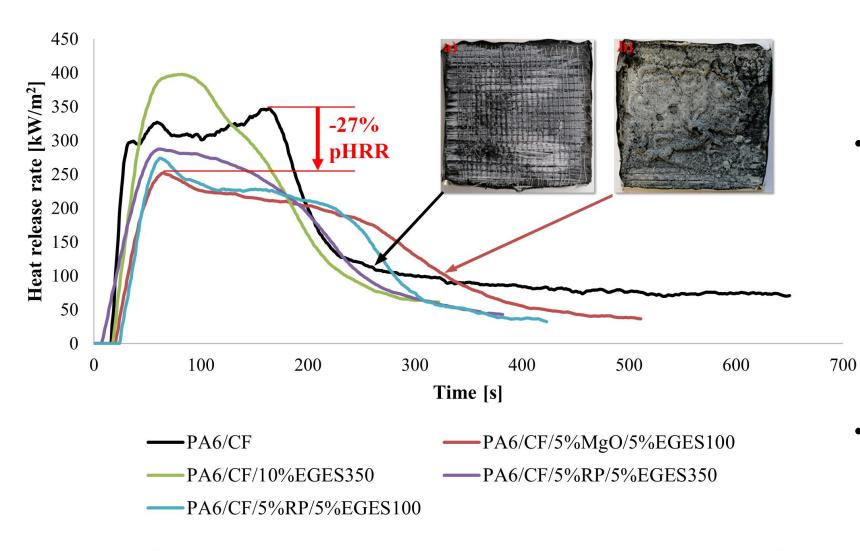
Department of Polymer Engineering, Budapest University of Technology and Economics, Budapest, Hungary

Introduction

- Use of composites in the automotive industry
 - Reduced weight, high strength, high stiffness, good corrosion resistance
- Disadvantages of thermoset composites:
 - Long cycle time
 - Difficult to recycle
 - High cost

 Use of thermoplastic polymer composites

- Disadvantage of polymers is their flammability
- **Solution:** flame retardancy


Introduction

- Flame retardant in matrix:
 - Large amount of flame retardants can adversely affect the mechanical properties of the composite
 - Solid phase flame retardants can be filtered by reinforcement layers
 - Fibre reinforcement can hinder the formation of a protective charred layer
- Solution: flame retardant coating
- Goals of the research:
 - Preparation of polyamide 6 composite by anionic ring-opening polymerization of $\epsilon\text{-caprolactam}$
 - Preparation of flame retardant coating by in-mould coating

Antecedents

- a) PA6/CF after MLC
- b) PA6/CF/5% MgO/5% EG ES100 after MLC
- Flame retardants (insoluble in εcaprolactam):
 - Expandable graphite with small and large particle sizes (EG ES100 and EG ES350)
 - Magnesium oxide (MgO)
 - Red phosphorus (RP)
- Further investigations with caprolactam-soluble hexaphenoxycyclotriphosphazene (HPCTP)

Materials

• Preparation of PA6:

- 87 mass% ε-caprolactam (monomer)
- 3 mass% activator (C20P)
- 10 mass% initiator (DL)

• Flame retardants:

- Expandable graphite (EG ES100)
- Hexaphenoxycyclotriphosphazene (HPCTP)
- HPCTP is soluble in ε-caprolactam → concentration series

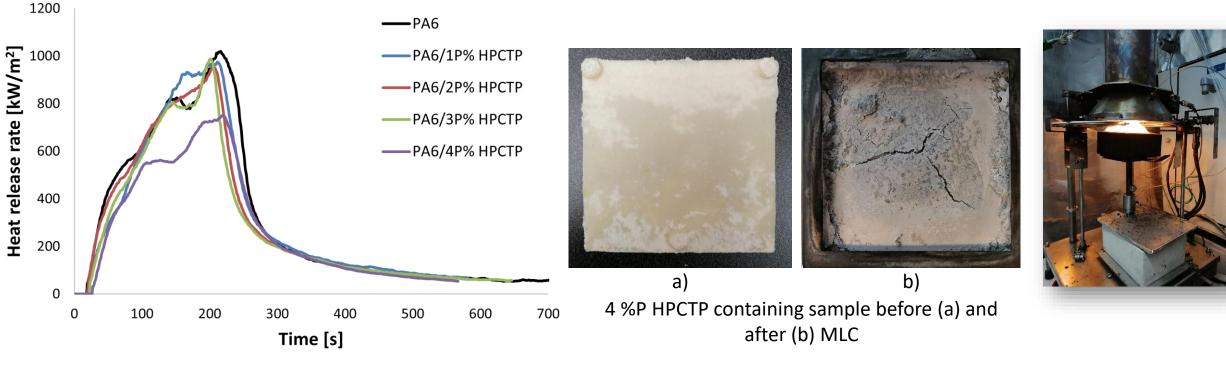
Flame retardant	Main component	Manufacturer	Brand name	P content (mass%)	Appearance	Soluble in molten ε- caprolactam	Polymerisation not hindered
EG ES100	•	Graphit Kropfmühl	ES 100 C10	-	Black powder	X	\checkmark
	Hexaphenoxycycl otriphosphazene		Rabitle FP110	13,4	White powder	\checkmark	\checkmark

Preparation of coating materials

- Preparation of the samples:
 - The monomer, the activator, and flame retardants were mixed and melted at 120 °C using a heated magnetic stirrer
 - Adding the initiator
- 150 °C aluminium tool
 - For modelling T-RTM

Aluminium tool

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites



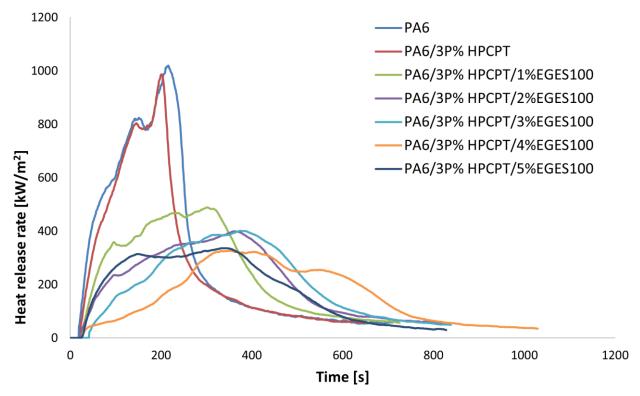
Mass loss calorimetry

• HPCTP containing samples:

- − Best results: 4P% HPCTP → uneven surface
- Combination of 3P% HPCTP with expandable graphite

Sample	TTI [s]	pHRR [kW/m²]	Time to pHRR [s]	THR [MJ/m²]	Residue [%]
PA6	19	1019	218	213	1,5
PA6/1P% HPCTP	20	975	211	196,9	0
PA6/2P% HPCTP	21	956	205	188,2	0
РА6/ЗР% НРСТР	23	987	202	181,9	0
PA6/4P% HPCTP	27	750	219	159,6	1,4

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites


Zsófia Kovács © 2023

7

Mass loss calorimetry

- As a single additive HPCPT did not show outstanding results → combination with expandable graphite is favourable in terms of flame retardancy.
- Combined gas (HPCPT) and solid phase (expandable graphite) mechanism → **synergistic flammability** results

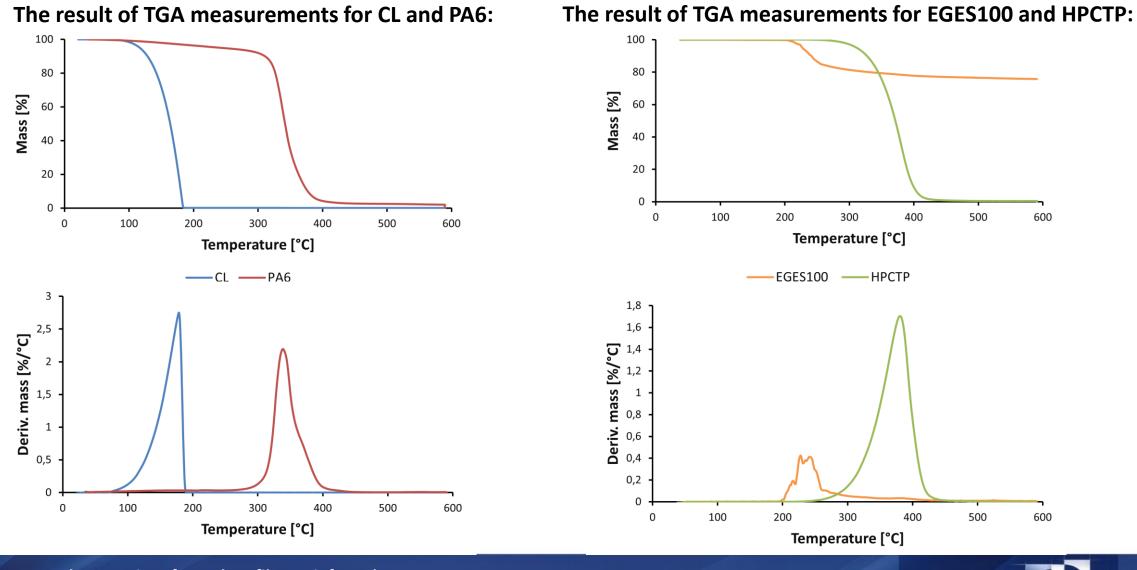
PA6/3P% HPCPT

PA6/3P% HPCPT/

 $10/\Gamma C \Gamma C 100$

PA6/3P% HPCPT/ 4%EGES100

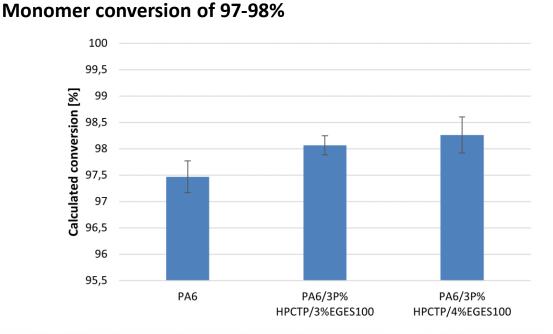
	1%EGES	100	4%EGE3100			
Samples	TTI [s]	pHRR [kW/m²]	Time to pHRR [s]	THR [MJ/m²]	Residue [%]	
PA6	19	1019	218	213	1,5	
РА6/ЗР% НРСРТ	23	987	202	182	0	
PA6/3P% HPCPT/1%EGES100	27	489	302	174	3,3	
PA6/3P% HPCPT/2%EGES100	22	399	360	168	5,3	
PA6/3P% HPCPT/3%EGES100	42	401	375	166	7,8	
PA6/3P% HPCPT/4%EGES100	26	327	353	151	9,8	
PA6/3P% HPCPT/5%EGES100	26	336	345	151	7,6	

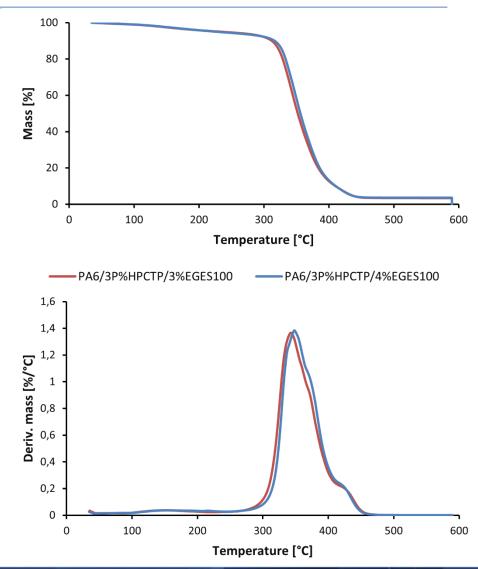

Based on the MLC tests, the selected flame retardant compositions:

- PA6/3P% HPCTP/3%EGES100
- PA6/3P% HPCTP/4%EGES100

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

Monomer conversion

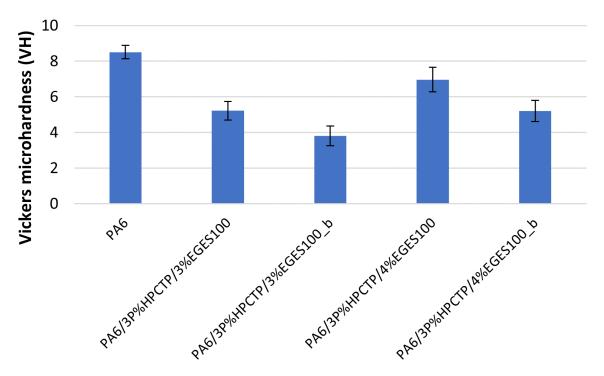

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites


Zsófia Kovács © 2023

9

Monomer conversion

- During the first stage of decomposition (up to ~100 °C), the water remaining in the sample is removed
- CL decomposition takes place between 100-190 °C
- Above 200 °C, PA6 depolymerizes and the detectable caprolactam is derived from the decomposition, rather than an unreacted residue
- The residual monomer content of the flame retarded samples was investigated between 100-190 °C

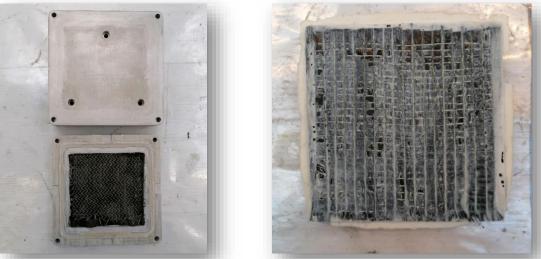

YMER

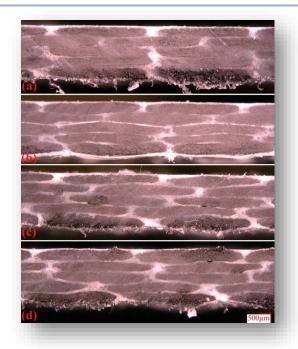
ENGINEERING

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

Microhardness testing

- The microhardness of the reference PA6 was 8.5 HV
- HPCTP acts as a plasticizer
- Increasing the amount of EGES100 also increased the microhardness
- There is a difference in hardness between the two sides of the sample
 - Sedimentation can be observed




Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

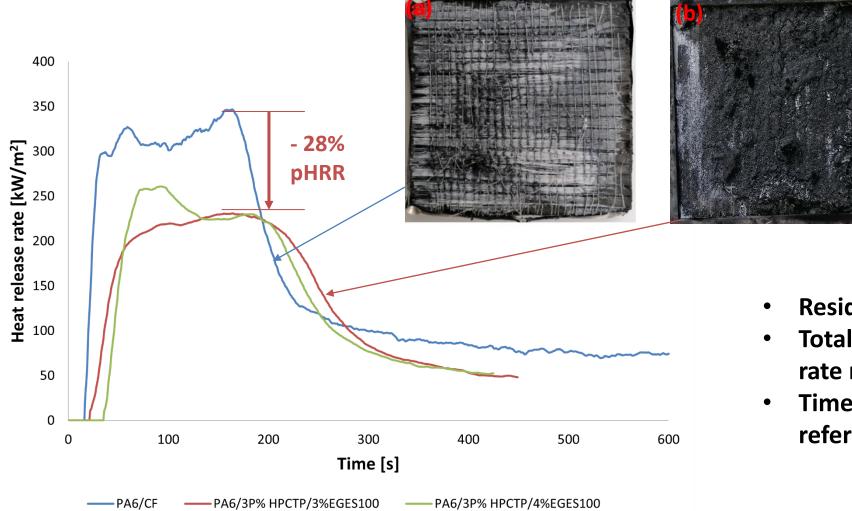
Preparation of PA6 composites

- Dimensions of the mould: 100 mm x 100 mm x 2 mm
- 5 layers of unidirectional carbon reinforcement were pre-placed in [0]₅ layup
- Preheating at 150 °C
- Preparation of matrix:
 - 87% ε-caprolactam
 - 3% activator (C20P)
 - 10% initiator (DL)
 - mixed and melted at 120 °C using a heated magnetic stirrer

Sample cross-section

- a) near injection, sample edge
- b) near injection, sample centre
- c) away from injection, sample edge
- d) away from injection, sample centre

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

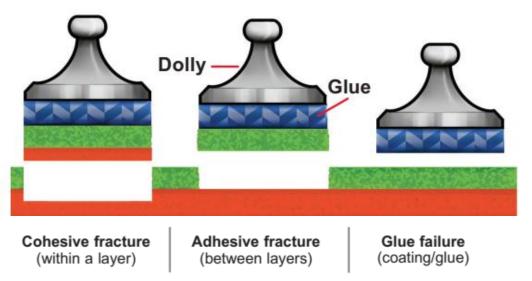

Preparation of composites with coatings

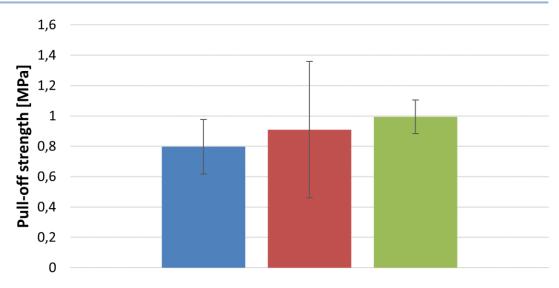
- Modelling of in-mould coating
- Dimensions of the mould: 100 mm x 100 mm x 2,5 mm
- Coating thickness: 0,5 mm
- Preheating at 150 °C
- Preparation of coatings:
 - ε-caprolactam, activator (C20P) and flame retardants were mixed and melted at 120 °C using a heated magnetic stirrer
 - initiator (DL) was added
- Injection using a glass syringe

Mass loss calorimetry

a) PA6/CF after MLC
b) PA6/CF/3P%
HPCTP/3%EGES100
after MLC

- Residual mass increased
- Total and maximum heat release rate reduced
- Time to ignition is longer than the reference


Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

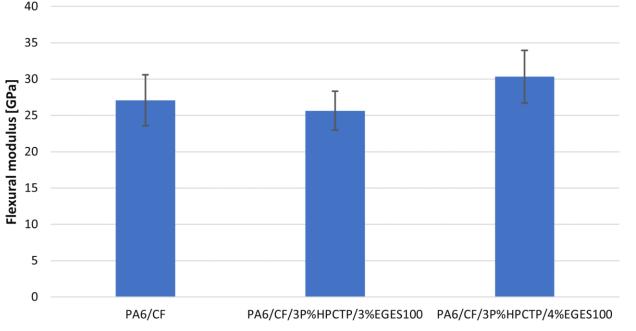


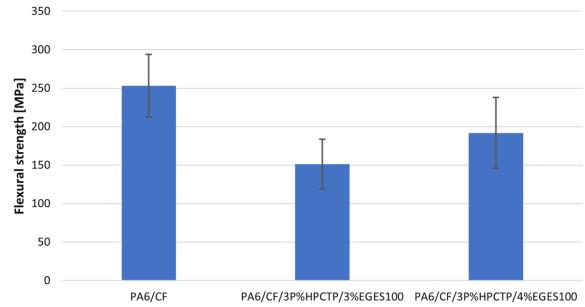
Pull-off adhesion test

Steps of the test:

- 1. Dolly and coating preparation (cleaning)
- 2. Glue and dolly application (minimum 24 hours for cross-linking)
- 3. Test area separation (The test area of the coating is isolated from the area surrounding)
- 4. Pull-off test

■ PA6 ■ PA6/CF/3%P HPCTP/3%EGES100 ■ PA6/CF/3%P HPCTP/4%EGES100


- **Reference:** flame retardant free PA6 coating
- Pull-off strength slightly increased
- Adhesive fracture


Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

Three-point bending test

- The flame retardants have reduced the flexural strength
- HPCTP acts as a plasticizer and weakens intermolecular interactions between polymer chains
- Flexural modulus values remained almost the same

The flame retardant coatings did not break after bending but separated from the composite surface in the pressed area.

PA6/CF/3P%HPCTP/4%EGES100 sample after threepoint bending test

Flame-retardant coatings for carbon fibre-reinforced polyamide 6 composites

Conclusion

- HPCTP and expandable graphite were used as flame retardants
- HPCTP did not show outstanding results when used as sole additive, but the combination with expandable graphite is favourable in terms of flame retardancy
- A synergistic effect is achieved by combining HPCTP and EGES100
- The composite coated with 3P% HPCTP and 3% EGES100 showed the best fire performance (-28% pHRR)
- HPCTP acts as a plasticizer

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING

Thank you for your attention!

Zsófia KOVÁCS, Andrea TOLDY

The research was supported by the National Research, Development and Innovation Office (NKFIH K142517, 2018-1.3.1-VKE-2018- 00011).

