Low cost rapid prototyping manufacturing process for tailored fiber placement components

ICCM23 International Conference on Composite Materials Belfast 2023 30.07. - 04.08.2023 – Belfast

<u>Simon Konze¹</u>, Tales Lisboa¹, Lars Bittrich¹, Markus Stommel^{1,2}, Axel Spickenheuer¹

¹ Leibniz-Institut für Polymerforschung Dresden e.V. ² Technische Universität Dresden, Fakultät Maschinenwesen

Outline

- Tailored Fiber Placement
- Different approaches for 3D printed molding tools
- Means to improve component quality
- Example of a complex geometry
- Conclusion

Properties of different materials

Normalized dense specific elastic modulus of different lightweight material

Tailored Fiber Placement (TFP)

- Near-net-shape production of variable-axial textile preforms
- Almost ideal utilization of anisotropic material properties
- Placement radii up to 5 mm

But...

... complex part surfaces (depending on component)

Complex molding tools required

Workflow from 3D Scan to embroidery pattern

Molds for TFP components

ipf

- Characteristic TFP surface often requires **3D milling**
 - Surface quality

Reusability

- Time consuming mold production
- Costly (esp. for prototypes and very small series)
- Utilizing **3D printing** (Fused Deposition Modeling) technology
 - Cheap process

- Surface quality
- Comparatively fast
 Limited lifetime of mold (not relevant for small series)
- Silicone molds cast from 3D printed parts
 - Easy demolding
 - Allows undercuts in geometry (simplifies CAD design)
 - Still inexpensive

Approaches for molding tools obtained by 3D printing

Time from CAD model to manufactured FRP prototype

Vacuum Assisted Process (VAP)

- Basis for all presented methods
- Printed molds and preform enclosed in semipermeable membrane

Single sided 3D printed mold (Stool "L1" miniature)

- 1. Four piece negative open mold design
- 2. ABS print used with mold release for easy demolding
- 3. Finish: Sanding and clear coat to remove 3D print artefacts

Production time (miniature)

- mold design, printing and acetone smoothing (2,5 days)
- Infusion and finishing (2 days)
 - = <u>4,5 days</u>

	Miniature	Original	
Height	15 cm	50 cm	
Weight	37 g	650 g	
Load case	-	200 kg	

Closed mold design for 2.5D components (silicone)

Closed mold design for 2.5D components (silicone)

ipf

Means to increase dimensional stability

Target: Prevent stretching of silicone

- Space for resin inserts inside of mold
 - easier inserting of preforms
 - easier demolding
- 3D printed frame around silicone

C-frame

- Mass reduced from 2.5 kg (steel) to 0.5 kg (TFP)
 -80%
- Same stiffness
 16.5 17 kN/mm
- Mass specific stiffness increased by +390 %

Steel

Complex 3D part

Design concept by HTW Dresden to provide support walking

- Part design (CAD) by HTW Dresden
- Mold design and manufacturing of FRP prototype (TFP) realized by IPF
- Post-processing of prototype carried out by HTW Dresden

Mold design and manufacturing

TFP preform and setup of VAP process

Demolding and post-processing

Finished prototype

after sanding

after clear coating

Comparison of different types of tool manufacturing

Manufacturing method	Conventional (milling)	3D printing (direct - print)	3D printing (indirect - silicone)
Preparation of CAM design for tooling	required: e.g. radii, no undercuts (!) avoid steep overhang undercuts possible for silicor		overhangs, for silicone molds
Surface quality	smooth	rough – smooth (depending on layer height and post processing)	
Time from CAD model to first part	1-3 weeks	2-3 days	2-5 days
Mold price	300 - 1000 €	< 10 €	< 30 €
Infiltration cycles	1000 and more	< 5	< 20
Application	large series	prototypes	mini series

Conclusion

- Based on 3D printing, different methods have been developed suitable for the production of prototypes and small series
- Even high quality TFP prototypes can be produced by making use of smoothing options (acetone smoothing of ABS prints and / or clear coat)
- Only low cost equipment needed (FDM printer, vacuum pump, optionally oven)

Contact

Simon Konze

Leibniz-Institut für Polymerforschung Dresden e. V.

Tel: +49 351 4658 666

E-Mail: konze@ipfdd.de

Web: www.ipfdd.de/tfp-technology

Acknowledgement

Kalina Zheynova, Kelsang Mende (HTW Dresden)

Thank you for your attention