

Bristol Composites Institute

Spectroscopy – Driven Application & Interphase Effect of Luminescent Composites

Dr. Kyungil Kong

ICCM23 International Conference Belfast Northern Ireland

bristol.ac.uk/composites

Contents

Introduction

- Light emitting phenomenon
- Materials and Characterisation
 - Sample preparation; Sample characterisation; Physiochemical mechanism
- Modified Micromechanical Modelling
 - Halpin-Tsai/ Mori-Tanaka Models
- Results
 - Spectroscopic data; Mechanical behaviours; Interphase elastic properties

ICCM 23, Belfast Northern Ireland 30 July – 4 August 2023

2

Introduction

Light Emitting?

Structural Health System

Composite Sensor

https://www.bam.de/_SharedDocs/EN/Im ages/energy-inspection-of-rotor-blades-2.jpg?__blob=normal

https://www.environmentalengineering.org.uk/wpcontent/uploads/media/Polariton-fluid-emitsclockwise-or-anticlockwise-spin-light-by-applyingelectric-fields-to-a-semiconductor-chip.png

Classification of different types of mechanoluminescence.

H. Zhang, et al., *Recent development of elastico-mechanoluminescent phosphors*, Journal of Luminescence. 207 (2019) 137–148. doi:10.1016/j.jlumin.2018.10.117.

University of BRISTOL Bristol Composites Institute

ICCM 23, Belfast Northern Ireland 30 July – 4 August 2023 4

SrAl₂O₄: Eu²⁺, Dy³⁺

Strontium aluminate, europium and dysprosium doped (SAOED)

- Emission Color: Long persistent green phosphor (500 600 nm)
- Storage: Room temperature
- Form : Powder
- MW : 209.11 g/mol , MP : > 1200 °C
- Formula : $Sr_{0.95}Eu_{0.02}Dy_{0.03}Al_2O_4$
- Activation wavelength band: 200 450 nm (365 nm optimal condition)

Objective

To investigate a valid EML phenomenon to monitor structural health condition (strain sensing).

- Indication of quantitative data from EML sensing to interpret structural health monitoring.
- Indication of interaction force between EML phosphors and elastomeric resin.
- Correlation to cyclic loading applied to samples and IR temperature change.
- Comparison of mechanical properties such as tensile strength and modulus of samples under the cyclic loading.

Potential application: Structural self-monitoring by functional elastomeric components under the repetitive loading.

Materials

Polyetherimide veil

Technical Fibre Products Ltd.

Luminescent phosphors

SrAl₂O₄: Eu²⁺, Dy³⁺

To investigate structural health monitoring ٠

Sigma Aldrich

ICCM 23, Belfast Northern Ireland 30 July – 4 August 2023

To increase fracture toughness

PDMS (Polydimethylsiloxane)

- To be a potential application for functional elastomeric components
- To figure out structural health of the ٠ elastomeric matrix

Manufacturing

University of BRISTOL Bristol Composites Institute

Characterisation

Fig. Scanning electron microscopy (SEM) images of EML/PEI veil composites.

Modified Micromechanical Modelling

Modified Micromechanical Modelling

Br

	Mori-Tanaka (MT)	Modified MT
	$ \begin{split} & \mathbb{C}^{c} \\ &= \mathbb{C}^{m} + V_{f} \langle \left(\mathbb{C}^{f} - \mathbb{C}^{m} \right) \mathbb{A}^{f} \rangle \left(V_{m} \mathbb{I} + V_{f} \langle \mathbb{A}^{f} \rangle \right)^{-1} \\ & \mathbb{A}^{f} \\ &= \left[\mathbb{I} + \mathbb{S}(\mathbb{C}^{m})^{-1} (\mathbb{C}^{f} - \mathbb{C}^{m}) \right]^{-1} \end{split} $	$\mathbb{C}^{c} = \mathbb{C}^{m} + \left[(V_{f} + V_{i})(\mathbb{C}^{i} - \mathbb{C}^{m})\mathbb{A}^{fi} + V_{f}(\mathbb{C}^{f} - \mathbb{C}^{i})\mathbb{A}^{f} \right] \times \left[V_{m}\mathbb{I} + (V_{f} + V_{i})\mathbb{A}^{fi} \right]^{-1}$
	$S_{1111} = S_{2222} = S_{3333} = \frac{7 - 5v_f}{15(1 - v_f)}$ $S_{1122} = S_{2233} = S_{3311} = S_{1133} = S_{2211} = S_{3322}$ $= \frac{5v_f - 1}{15(1 - v_f)}$ $4 - 5v_f$	$\begin{split} \mathbb{A}^{fi} \\ &= \mathbb{I} - \mathbb{S} \left\{ \frac{V_f}{V_f + V_i} \Big[\mathbb{S} + \left(\mathbb{C}^f - \mathbb{C}^m \right)^{-1} \mathbb{C}^m \Big]^{-1} \\ &+ \frac{V_i}{V_f + V_i} \Big[\mathbb{S} + \left(\mathbb{C}^i - \mathbb{C}^m \right)^{-1} \mathbb{C}^m \Big]^{-1} \Big\} \end{split}$
	$S_{1212} = S_{2323} = S_{3131} = \frac{1 - 5v_f}{15(1 - v_f)}$	
ist	University of BRISTOL of Composites Institute IICCM 23, Belfast Northern Irela 30 July – 4 August 2023	nd

Results

Fig. Mechanical behaviour, thermal effect, and spectral changes along with cyclic loading (One loop of normalised data).

Fig. EML mechanism of the polyetherimide veil incorporated with phosphors in a matrix.

Properties	PDMS (matrix)	SAOED (particles)
Young's modulus	0.556 MPa	102 GPa
Poisson's ratio	0.45	0.23
Ref.	From experiment	[1]

[1] Yamada *et al.*, "Ab initio calculations of the mechanical properties of $SrAl_2O_4$ stuffed tridymite." (2007): 126103.

¹⁰ Fig. Young's modulus of composites with comparing micromechanical models and an experimental result.

Conclusions

- EML phosphors in a transparent matrix exhibit strain-driven monitoring behaviour.
- Phosphor particles increase elastic modulus and luminescence with cyclic loads.
- Strain sensing is applicable for repeated use in mechanical response.
- EML information is readable at higher cyclic loading.
- The strain sensing exhibits linear and durable characteristics as a sensor.

Acknowledgements

• This work was supported by **Wind Blade Research Hub**, a collaboration between the *University of Bristol* and the *Offshore Renewable Energy Catapult*.

- Co-authors: Dr. Kirsten Dyer², Prof. Paul M Weaver^{1,3}, Prof. Ian Hamerton¹
- ^{1,3} Bristol Composites Institute, University of Bristol, UK

Bernal Institute, School of Engineering, University of Limerick, Ireland

² Offshore Renewable Energy Catapult, Glasgow, UK

Bristol Composites Institute

Email: kyungil.kong@bristol.ac.uk

bristol.ac.uk/composites

