

The University of Texas at Austin Walker Department of Mechanical Engineering Cockrell School of Engineering

In-Situ Consolidated Automated Fiber Placement Carbon Fiber PAEK Composites

Joseph Kirchhoff (Presenter), Dr. Mehrani Tehrani (PI), Nathaniel Heathman, Timothy Yap, Pratik Koirala

Motivated Towards a Sustainable Composite Industry

& Non-Recyclable

Outline

- In situ Consolidation AFP of Thermoplastic Composites (ICAT)
 - Overview of our system
 - Bond strength and fracture toughness in ICAT
 - Effect of tape staggering on interlaminar strength
 - Towards understanding bonding in ICAT: a materials science view
 - Conclusions

Laser-Assisted Automated Fiber Placement (L-AFP) In situ Consolidation AFP of Thermoplastic Composites (ICAT)

ICAT Processing-Structure-Properties

- Process variables: speed, temperature, compaction force
- Three factors per variable
- Short beam shear strength as response
- Nine samples for the partial factorial design of experiments
- Taguchi method analysis

Sample	Speed (mm/s)	Processing Temp. (°C)	Compaction Force (N)
#1	50	360	200
#2	50	400	300
#3	50	380	400
#4	100	360	300
#5	100	400	400
#6	100	380	200
#7	150	360	400
#8	150	400	200
#9	150	380	300

Results (1/2" tapes, no gaps)

Sample Speed (mm/s) Processing Temp. (°C) Compaction Force (N)

#2	50	400	300
#7	150	360	400

The University of Texas at Austin

Cockrell School of Engineering

JACOBS SCHOOL OF ENGINEERING

UC San Diego

Void Analysis

The University of Texas at Austin Cockrell School of Engineering UC San Diego JACOBS SCHOOL OF ENGINEERING

7

Crystallinity analysis

Sample	Speed	Processing Temp.	Compaction Force
	(<i>mm</i> /s)	(°C)	(N)
#2	50	400	300
#7	150	360	400

Post-annealed samples achieve a crystallinity of ~25% and SBS strength of 63 MPa.

Failure Modes: ICAT vs. Compression Molded

Repetitive Heating and Pressing

Fracture Toughness Coupons

Processing Parameters

- Speed: 100 mm/s, 200 mm/s
- Processing Temperature: 400 °C
- Compaction force: 400 N
- Heated Tool: 150 °C
- Material: CF/LM-PAEK Tape 12.35 x 0.13 mm

Fracture Toughness sample fabrication

Solidification Kinetics

Void Content and Shape

SBS coupons 100 mm/s

SBS coupons at 200 mm/s

ILSS, G_{IC} , and G_{IIC}

SBS for post-processed samples: VBO and CM is ~95 MPa

G_{IC} and **G**_{IIC} for Different Composites (DCB and ENF)

Strain Energy Release Rate in KJ.m⁻²

Material	G _{Ic}	G _{IIc}
ICAT (0.2 m/s or ~500 IPM)	1.7	2.1
T300/914	0.2	0.5-0.6
AS4/3502	0.2	0.6
AS4/PEEK	1.3-1.7	1.2-1.8
AS4 Fabric/LY564	0.72	3.5
IM7/8552	0.2	1.1-1.7

Fractography of Mode I Coupons

Fractography of Mode II Coupons

100 mm/s

Brittle fracture (hackles)

200 mm/s

Ductile fracture (matrix tearing and stretching)

Effects of Gap Defects (Staggering)

The University of Texas at Austin Cockrell School of Engineering

UC San Diego JACOBS SCHOOL OF ENGINEERING

Staggering vs. SBS

Conclusions

- ICAT is a complex process: bonding strength with intimate contact, interdiffusion and solidification interaction needs to be studied and better understood in the context of composite's multi-scale mechanics.
- High-rate AFP resulting in low SBS (<45MPa) and high porosities (>2%) may achieve damage resistance on par with thermosetting composites.

Acknowledgements

Joseph Kirchhoff Kirchhoff@my.utexas.edu jgkirchhoff@github.io

Dr. Mehran Tehrani Tehrani@ucsd.edu

UC San Diego JACOBS SCHOOL OF ENGINEERING