

Evaluation of Recyclability through Pyrolysis of Composite Lashing bar Jae-Yang Kim^{1, 2}, Jong-Rok Ha^{1, 2}, Dong-Gi Seong^{2*}

¹Research Institute of Medium & Small shipbuilding, Busan, Republic of Korea

²Department of Polymer Science, Pusan National University, Busan, Republic of Korea

* Corresponding author (dgseong@pusan.ac.kr)

INTRODUCTION

Lashing bar

- A lashing bar is a device used to fix containers on a container ship, and is fixed through tension applied to the lashing bar
- The lashing bar is made of metal and used, but due to its heavy weight during use, great damage occurs in the event of a safety accident
- In order to suppress accidents, we are researching the manufacturing of

Comparison

	Steel	Composites
Tensile Strength	100 MPa	200 MPa
Specific Gravity	7.8	2.0
Corrosion	10 Years	50 Years
Weight	20 kg	10 kg

lacing bars using composite materials with light weight and high

mechanical properties

<Lashing bar>

Recycling of CFRP

- Recycling of CFRP is being studied in various ways dueto the high price of CF
- Common recycling methods can be divided into three categories : mechanical recycling, chemical process, pyrolysis
- Mechanical grinding or milling is not suitable for high-priced carbon fiber because it causes a lot of damage, and research through pyrolysis and chemical methods is being actively conducted
- Pyrolysis was carried out to confirm the thermal stability of the composite lashing bar and to evaluate its recyclability after use

 Pros and cons 	
Adventages	Disadvantages
- Existing commercial equipment	- Resin residue on the fiber surface
- Energy recovery from resin	- Large process variation depending on fiber type
- Excellent adhesion between rCF and epoxy	- Requires gas processing device

- Realization of pyrolysis using an electric furnace
- This equipment can raise the temperature to about 1100 °C

EXPERIMENT

- Dynamic ramp type

- Heating rate : 10 °C / min

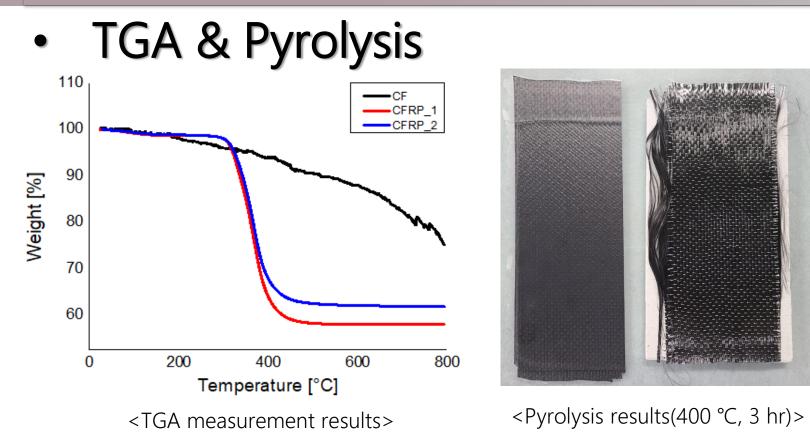
- Check weight loss

TGA Condition

Pyrolysis Condition

- Decision based on TGA results : 300, 400 °C, 8 °C / min
- Faild evaluation 300 °C
- Proceed at 400 °C to complete

SEM-EDS 20 kV, SE, HV, x950

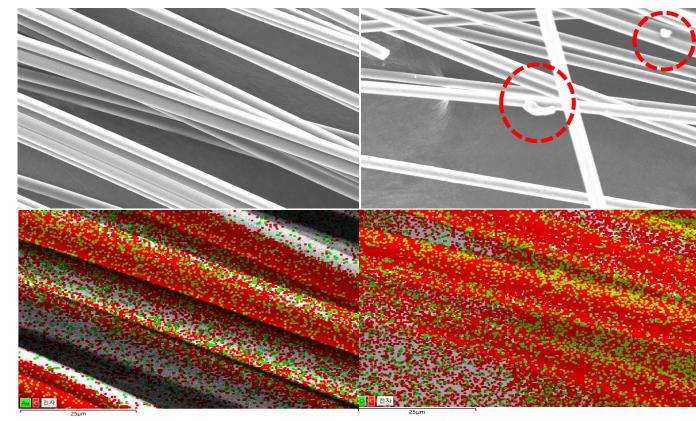


- Working condition : 23 °C, 53 % RH

SEM-EDS Condition

- Check surface condition by SEM
- Surafce composition analysis using EDS

RESULT



- 300 °C : Resin decomposition occurs - pyrolysis was carried out at 300 °C, but the resin was not completely decomposed, so the test was completed by pyrolysis at 400 °C

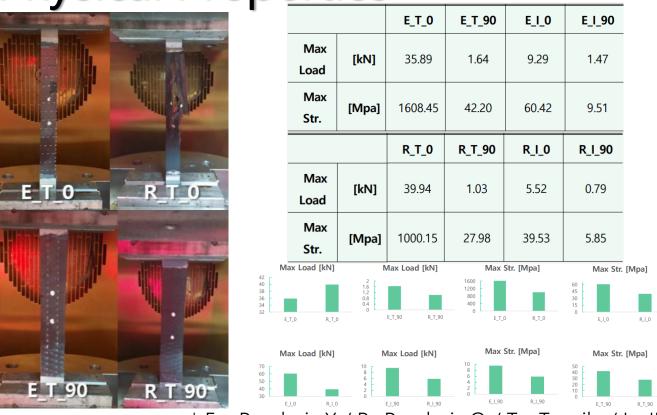
SEM-EDS

Pyrolysis

300, 400 °C

<SEM&EDS measurement results (Left : CF Right : rCF)> - SEM-EDS CF Result

Element	Line type	Weight %	Weight % σ	atom %
С	K series	92.61	-	92.61
Au	K series	7.39	-	7.39


- SEM-EDS rCE Result

Element Line type Weight % V	/eight % σ atom %
C K series 83.36	0.36 88.81
O K series 13.63	0.35 10.90

- Looking at the SEM results, resin remains on the surface compared to the initial fiber

- Other than that, there is no significant difference when looking at the surface
- EDS results show that a lot of O is generated on the surface during the pyrolysis process
- It can be seen that oxidation has occurred in the fiber

Physical Properties

* E – Pyrolysis X / R- Pyrolysis O / T - Tensile / I - ILSS - Changes in failure patterns before and after pyrolysis

- Max strength value decreases overall after pyrolysis

- ✓ As a result of the TGA measurement, a weight loss is shown at around 320 ° C. The weight loss section appearing after 600 ° C is considered to be the decomposition of carbon fiber
- ✓ As a result of the SEM measurement, it was confirmed that the resin was completely removed from the fiber surface during the pyrolysis process, and as a result of the EDS result, a lot of O was generated on the surface, indicating that the fiber itself had been oxidized
- \checkmark The pyrolysis test on CFRP is expected to be used as a material for recycling synthetic lashing bars in the future
- \checkmark Decomposition temperature and time must be controlled to minimize surface oxidation and property degradation
- \checkmark Based on this, we plan to carry out a recovery study on CFRP that is not usable in ther future

Acknowledgements

This work was supported by the Technology Innovation Program (20011244, Development of technology on 490kN class composite materials securing system and real-time monitoring system for container ship) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

46757, 38-6 Noksansandan 232-ro, Gangseo-gu, Busan, Republic of Korea * Telephone : +82-51-51-794-5535 * Facsimile : +82-51-974-5577

