Development of Bio-based Flame Retardants using Recovered Biopolymers from Wastewater Sludge

<u>Nam Kyeun Kim¹</u>, Krishnan Jayaraman¹, Debes Bhattacharyya¹, Mark van Loosdrecht² and Yuemei Lin²

¹Centre for Advanced Materials Manufacturing and Design, Department of Mechanical & Mechatronics Engineering, The University of Auckland, New Zealand ²Department of Biotechnology, Delft University of Technology, the Netherlands

ICCM-23 Belfast, Jul 30 – Aug 4, 2023

CENTRE FOR ADVANCED MATERIALS MANUFACTURING & DESIGN

CONTENT

Background

Results and Discussion

Conclusions

Background

(Fox News-Investigative Committee of the Russian Federation via Storyful)

> Natural fibre based flame retardants

A new use for chicken feathers is attracting a lot of attention

(D. Jung, D. Bhattacharyya, ACS Sustain. Chem. Eng (2019) 7(23) 19072)

Background

THE UNIVERSITY OF AUCKLAND Te Whare Wananga o Tamaki Makaurau N E W Z E A L A N D

Extracellular Polymeric Substances (EPS) Wastewater Waste sludge **EPS** extraction treatment plants **EPS** polysaccharides functional tests **Potential Applications of EPS** EPS gel-formation al property Paper coating complete separatio tructural solubilization EPS proteins Flame retardant \triangleright other EPS **Cement curing** polysaccharides cells DNA

Combustion Cycle / Flame Retardation

<u>885</u>

THE UNIVERSITY OF

NEW ZEALAND

CONTENT

Background

Experimental

Results and Discussion

Conclusions

EPS Extraction and Phosphorylation

EPS Extraction Phosphorylation \geq process Wastewater treatment plant **EPS** solution in **Wastewater** Lime treatment stabilisation processes Adding trisodium trimetaphosphate **Biosolid EPS** powder **EPS extraction process** Adjust solution to Stirring in a Na₂CO₃ Storage at Centrifugation Solution water bath (4°C) fridge (4°C) (80°C) mixing Pellet repH adjust Freezing Centrifugation with 1M dissolving with (-50 °C) (4°C) NaOH at pH 8.5 HCI

EPS extraction process diagram using centrifugal force

EPS / STMP

EPS coated Wool Felt

➤ Wool felt

• Medium density (250 kg/m³) wool felt for filtration, cladding and sealing applications

Vacuum-assisted Dip Coating Method

Characterisation

- Fourier Transform Infrared Spectroscopy
- > Thermogravimetric analysis (TGA)
- Vertical burn test (ASTM D3801)
- Cone calorimeter
- Scanning electron microscope (SEM)

- ASTM E1354 standard
- 50 kW/m² heat flux
- Fire reaction properties
 - Time to ignition (TTI)
 - Peak heat release rate (PHRR)
 - Total heat release (THR)
 - Total smoke production (TSP)

CONTENT

Background \rightarrow

Results and Discussion

Conclusions

CENTRE FOR ADVANCED MATERIALS MANUFACTURING & DESIGN

Fourier Transform Infrared Spectroscopy

888 8

Thermogravimetric Analysis

100

80

Weight (%)

40

20

0

_	< 					EPS			
						1.5 wt% Phosph 3 wt% S Phosph	STMP orylated STMP orylated	I EPS	w
0	100	200	300 Tem	400 perature	500 e (°C)	600	700	800	

Sample	Amount of residue at 800 °C (wt%)				
EPS from wastewater sludge	27.4				
1.5 wt% STMP treated EPS	30.7				
3 wt% STMP treated EPS	41.1				
Wool	24.1				
Ammonium polyphosphate	29				

THE UNIVERSITY OF

NEW ZEALAND

Fire Reaction Properties

THE UNIVERSITY OF AUCKLAND Whare Wananga o Tamaki Makaurau N E W Z E A L A N D

Microstructures of Char

Wool/EPS felt

Wool/EPS/STMP felt

Vertical Burn

EPS coated Wool felt

coated Wool

felt

EPS/STMP3 coated Wool felt

EPS coated Flax Fibre/PP Composites

EPS coated Flax

Short fibres after grinding

EPS solution

EPS coated flax fibres

~ 5 wt.% EPS absorbed in flax

Granulator

Melt-blending (compounding)

Compression moulding process

EPS coated flax fibre (30 wt.%) based composite panels

(Kim, Bhattacharyya, Loosdrecht, Lin. Polymer Testing. (2023) Under review)

Thermogravimetric Analysis

> EPS coated flax fibres

EPS coated flax fibres/PP composite

(Kim, Bhattacharyya, Loosdrecht, Lin. Polymer Testing. (2023) Under review)

THE UNIVERSITY OF

NEW ZEALAND

<u>888</u>

Fire Reaction Properties

THE UNIVERSITY OF AUCKLAND Te Whare Wananga o Tamaki Makaurau N E W Z E A L A N D

(Kim, Bhattacharyya, Loosdrecht, Lin. Sci. Total Environ. (2022) 805, 150434 / Kim, Bhattacharyya, Loosdrecht, Lin. Polymer Testing. (2023) Under review)

Conclusions

- The phosphorylation process of EPS created additional phosphorus groups and improved char forming capability of the biopolymer
- The ~ 30 wt% EPS in wool felt achieved the self-extinguishment and reduced peak heat release rate (~18 %) compared to one of wool felt.
- The addition of EPS and STMP into wool felt achieved the remarkable decrease in peak heat release rate (35 %) in comparison with one of wool due to the compact char formation.
- The 30 wt.% EPS coated flax fibre/PP composite achieved the reduction of peak heat release rate (33.8 %) and CO production rate (55.7 %) in comparison with those of PP.
- EPS contributed effective char formation to reduce flammability of wool felt and composite.

nam.kim@auckland.ac.nz