School of Engineering and Material Sciences

Data-driven topology optimisation for energy-absorbing structures

S.F. Khosroshahi¹, H. Kansara¹, S. Kumar², M.A. Bessa³ and W. Tan^{1*}

1. School of Engineering and Materials Science, Queen Mary University of London, London UK

- 2. Department of Materials Science and Engineering, TU Delft, Delft, Netherlands
- 3. School of Engineering, Brown university, Providence, Rhode Island, USA

Motivation of using lightweight materials Queen Mary

What are Impact Energy absorbers?! Queen Mary

The picture is adopted from www.bikebandit.com/

Cellular structures/materials

Mechanical behaviour of cellular materials

Ashby chart

Flavia Libonati & Markus J. Buehler, Advanced Engineering Materials, 2017.

Development of new structures/materials Queen Mary

Graded lattice structures

Graded lattice structures

Uniform lattice structures

Uniform lattice structures

Lattice liners for helmets

Graded lattice liner vs EPS liner

Lattice vs Spinodoids

Spinodoids topology = $f(\bar{\rho}, \theta_1, \theta_2, \theta_3)$ Queen Mary

Experimental tests

Spinodoids_under compression_PET_G

Experimental results: Carbon_P

FE Modelling

- □ Hill plastic anisotropic model.
- Tetrahedral Elements
- General contact:
 - > Contact between the specimen and the anvil and the loading upper plate
 - > Self contact: internal surfaces contacting each other.

FEM vs Experiments-PETG

23

Optimisation

Objectives: Crush efficiency & Energy absorption

Strong correlation between Ro and the objective functions despite the others!

Why Bayesian optimisation?!

Why Bayesian optimisation?!

- □ Highly nonlinear relationship between the topology and mechanical response.
- □ Computationally expensive.
- Large design space

 $\Sigma_{i,j}$: Covariance: how x_i and x_j are correrlated

$$P(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|} e^{-\frac{1}{2}((x-\mu)^T \Sigma^{-1}(x-\mu))}$$

We use Kernel function to estimate $\Sigma_{i,i}$

Results of the Optimisation

Optimisation: 1 Objective function & 3 variables

34

35

Summary and future work

Experimental tests

Material characterization

Crushing spinodal structures

FE modelling

□ The results of FEM are in good agreement with the experimental tests results.

Optimisation

A data-driven optimisation framework has been developed for multi-objective topology optimisation of spinodal structures.

The framework has been successfully used to find the best spinodal structure to maximise CE and EA simultaneously.

Future work

Scale up the framework for larger structures featuring different types of spinodal structures at different points.

github.com/MCM-QMUL/CELLCOMP

Thanks!

Engineering and Physical Sciences Research Council

FEM vs Experiments-PETG: Columnar Queen Mary

