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WHY COMBINE METALLIC AND CARBON FIBERS

• The rigidity of CF together with the ductility and electrical 

conductivity of metals

• MCFRPs can intrinsically realize aircraft functions such as   

impact tolerance, signal transport, lightning-strike protection 

METASTABLE AUSTENITIC STAINLESS STEEL FIBERS

• More ductility and damage tolerance in the composite

• Additional functionality through improved electrical conductivity 

• Possibility of non-destructive structural health monitoring (SHM) 

through the austenite-martensite phase transformation

• Characterization of isothermal fatigue behavior necessary to 

validate SHM method at aviation standard testing temperatures

MOTIVATION

Metal/carbon-fiber hybrid 
composites (MCFRPs)
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PROJECT OBJECTIVE

Isothermal fatigue characterization of CFRP and MCFRP

FOLLOW-UP TO A PREVIOUS PROJECT

• Optimal MCFRP laminate layup determined

• Multi-directional layup with stainless steel fibers on the periphery

ISOTHERMAL FATIGUE CHARACTERIZATION 

• In the LCF and HCF regimes, up to 2 × 106 loading cycles at       

RT, -55°C and +120°C with R = 0.1

• Constant and increasing load-amplitude tests (CLA & ILA)

• Microscopy and crack propagation analysis

• Simultaneous monitoring of

• Surface temperature

• Electrical resistance

• Magnetic response due to deformation-induced martensitic 

phase transformation

Backe et al., 2018 [1]
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MATERIALS AND METHODS

Laminate fabrication and sample preparation

FABRICATION AT TU KAISERSLAUTERN

• Autoclave process to fabricate CFRP and MCFRP plates

• Diameters: 7 µm carbon fiber bundles, 70 µm steel fibers

• Samples cut from plates using water-jet cutting

TESTING SETUP

• Zwick/Roell HC-25 servo-hydraulic testing machine (Fmax = 25 kN), 

equipped with:

• (1) pressurized sample clamps, (2) force sensor, (3) strain gauge,        

(4) thermocouples, (5) 4-point resistance measurement

• Ferritscope to measure martensite content of steel fibers in MCFRP

FATIGUE TESTING PARAMETERS

• R = 0.1

• Up to 2 × 106 cycles

• f = 5 Hz (RT and 120 °C), f = 10 Hz @ -55 °C

(2)

(1)



CFRP

• Multidirectional layup with two 0° peripheral layers, forming a 

total of four 0° CF layers

• 60 vol. % CF in epoxy resin
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CFRP MCFRP

MATERIALS AND METHODS

Laminate Layup

MCFRP

• Eight SF layers replacing the outermost 0° and 90° CF-plies, 

resulting in two 0° CF-layers and four 0° SF-layers

• CF and SF content: 49 vol. % and 18 vol. % respectively

Khatri et al., 2022 [2]



• UTS of CFRP higher, due to the two additional 0° plies in its layup

• UTS generally higher at lower temperatures

• Failure strain comparable between CFRP and MCFRP for all temperatures
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RESULTS - I

Isothermal tensile tests
Khatri et al., 2022 [2]



CFRP

• No stiffness degradation until 

~50% of Nb

• ∆R constant until failure of 0°

CF-layers
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RESULTS - II

Increasing load amplitude tests

MCFRP

• Stiffness degradation more 

reactive to the increasing load

• Progressive ∆T at RT

• ∆R dependent on SF breakage

• ∆σa = 5 MPa every 5 × 103 to 1 × 104 cycles per step (∆N)
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RESULTS - III 

Constant load amplitude tests

CFRP

• Fatigue softening and stiffness 

degradation observed at all 

three test temperatures

• No significant change in ∆R until 

failure

MCFRP

• Initial fatigue softening, 

followed by a stable stiffness 

behavior

• Increase in ∆R with SF breakage



• Both laminates show higher stiffness at lower temperatures

• CFRP is in general stiffer due to the difference in the 

number of 0°-layers in the laminate

• MCFRP Maximum martensite content of 8.5 % observed, 

only at -55 °C
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RESULTS - IV 

S-N Curves and the martensitic phase transformation

• SHM not possible at RT and above due to fiber composition

• Even though the steel fibers lie within the tolerances of the 

standard, the Ni and Cr equivalent contents measured 

result in a stable austenite phase at RT

• A more tailored chemical composition of the steel fibers can 

ensure metastability at RT

[2]

[1, 2]



CFRP

• Damage in the outer layers observed as early as 13 % · Nf

• The central 0°-plies intact until after 50 % · Nf

• Delaminations and accelerated damage observed after 75 % · Nf
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RESULTS V

Microscopy and failure behavior - CFRP

[2]

Khatri et al., 2022 [2]



MCFRP

• No significant damage up to  ~50 % · Nf

• Steel fiber delamination and breakage precede those of CF

• Accelerated damage of the CF layers observed after 85 % · Nf
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RESULTS V

Microscopy and failure behavior - MCFRP

[2]

Khatri et al., 2022 [2]



Summary

HIGHER STIFFNESS OBSERVED AT LOWER TEMPERATURES

• CFRP up to 30 %, MCFRP up to 40 % stiffer at -55 °C compared to RT

MCFRP SAMPLES EXHIBITED SLOWER FATIGUE ONSET

• Higher plastic deformation observed for MCFRP under fatigue loading

• The inclusion of steel fibers resulted in a more ductile failure behavior

ALLOY COMPOSITION OF STEEL FIBERS CRITICAL

• No martensitic transformation observed at RT

• Up to 8 % martensite measured after CLA tests at -55 °C

• Ni and Cr content in the stainless steel fibers critical, even while 

remaining within the limits of the DIN 1.4301 standard 
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