

Isothermal fatigue behavior of metal/CF hybrid composites with potential for intrinsic structural health monitoring

Bilal Khatri¹, Jan Rehra², Sebastian Schmeer², Ulf Breuer², Frank Balle¹

¹Walter and Ingeborg Herrmann Chair for Power Ultrasonics and Engineering of Functional Materials (EFM), Institute for Sustainable Systems Engineering, University of Freiburg, Germany

²Leibniz Institute for Composite Materials (IVW) University of Kaiserslautern, Germany

ICCM 23, Belfast, Northern Ireland

universität freiburg

universität freiburg

MOTIVATION composites (MCFRPs)

WHY COMBINE METALLIC AND CARBON FIBERS

- conductivity of metals

METASTABLE AUSTENITIC STAINLESS STEEL FIBERS

- •

Metal/carbon-fiber hybrid

• The rigidity of CF together with the ductility and electrical

• MCFRPs can intrinsically realize aircraft functions such as impact tolerance, signal transport, lightning-strike protection

More ductility and damage tolerance in the composite Additional functionality through improved electrical conductivity Possibility of non-destructive structural health monitoring (SHM) through the austenite-martensite phase transformation

 Characterization of isothermal fatigue behavior necessary to validate SHM method at aviation standard testing temperatures

PROJECT OBJECTIVE Isothermal fatigue characterization of CFRP and MCFRP

FOLLOW-UP TO A PREVIOUS PROJECT

- Optimal MCFRP laminate layup determined
- Multi-directional layup with stainless steel fibers on the periphery

ISOTHERMAL FATIGUE CHARACTERIZATION

- In the LCF and HCF regimes, up to 2×10^6 loading cycles at RT, -55°C and +120°C with R = 0.1
- Constant and increasing load-amplitude tests (CLA & ILA)
- Microscopy and crack propagation analysis
- Simultaneous monitoring of
 - Surface temperature
 - Electrical resistance
 - Magnetic response due to deformation-induced martensitic phase transformation

universitätfreiburg

Backe et al., 2018 [1]

MATERIALS AND METHODS Laminate fabrication and sample preparation

FABRICATION AT TU KAISERSLAUTERN

- Autoclave process to fabricate CFRP and MCFRP plates
 - Diameters: 7 µm carbon fiber bundles, 70 µm steel fibers
- Samples cut from plates using water-jet cutting

TESTING SETUP

- Zwick/Roell HC-25 servo-hydraulic testing machine ($F_{max} = 25 \text{ kN}$), equipped with:
- (1) pressurized sample clamps, (2) force sensor, (3) strain gauge,
 (4) thermocouples, (5) 4-point resistance measurement
- Ferritscope to measure martensite content of steel fibers in MCFRP

FATIGUE TESTING PARAMETERS

- R = 0.1
- Up to 2×10^6 cycles
- f = 5 Hz (RT and 120 °C), f = 10 Hz @ -55 °C

MATERIALS AND METHODS Laminate Layup

CFRP

- Multidirectional layup with two 0° peripheral layers, forming a total of four 0° CF layers
- 60 vol. % CF in epoxy resin

universität freiburg

MCFRP

Khatri et al., 2022 [2]

Eight SF layers replacing the outermost 0° and 90° CF-plies, resulting in two 0° CF-layers and four 0° SF-layers • CF and SF content: 49 vol. % and 18 vol. % respectively

RESULTS - I Isothermal tensile tests

- UTS of CFRP higher, due to the two additional 0° plies in its layup
- UTS generally higher at lower temperatures •
- Failure strain comparable between CFRP and MCFRP for all temperatures

universität freiburg

RESULTS - II Increasing load amplitude tests

• $\Delta \sigma_a = 5$ MPa every 5 × 10³ to 1 × 10⁴ cycles per step (ΔN)

CFRP

- No stiffness degradation until ${\sim}50\%$ of ${\rm N_b}$
- ΔR constant until failure of 0° CF-layers

MCFRP

- Stiffness degradation more reactive to the increasing load
- Progressive ΔT at RT
- ΔR dependent on SF breakage

universität freiburg

RESULTS - III Constant load amplitude tests

CFRP

- Fatigue softening and stiffness degradation observed at all three test temperatures
- No significant change in ΔR until failure

MCFRP

- Initial fatigue softening, followed by a stable stiffness behavior
- Increase in ΔR with SF breakage

universität freiburg

RESULTS - IV S-N Curves and the martensitic phase transformation

- ٠
- ensure metastability at RT

- Both laminates show higher stiffness at lower temperatures
- CFRP is in general stiffer due to the difference in the number of 0°-layers in the laminate
- MCFRP Maximum martensite content of 8.5 % observed, only at -55 °C

universität freiburg

• SHM not possible at RT and above due to fiber composition Even though the steel fibers lie within the tolerances of the standard, the Ni and Cr equivalent contents measured result in a stable austenite phase at RT • A more tailored chemical composition of the steel fibers can

RESULTS V Microscopy and failure behavior - CFRP

CFRP

- Damage in the outer layers observed as early as 13 $\% \cdot {\rm N_f}$
- The central 0°-plies intact until after 50 % \cdot N_{f}
- Delaminations and accelerated damage observed after 75 % \cdot N_{f}

universität freiburg

Khatri et al., 2022 [2]

RESULTS V Microscopy and failure behavior - MCFRP

MCFRP

- No significant damage up to ~50 $\% \cdot \rm N_{f}$
- Steel fiber delamination and breakage precede those of CF
- Accelerated damage of the CF layers observed after 85 $\% \cdot {\rm N_f}$

universität freiburg

Khatri et al., 2022 [2]

[2]

Summary

HIGHER STIFFNESS OBSERVED AT LOWER TEMPERATURES

MCFRP SAMPLES EXHIBITED SLOWER FATIGUE ONSET

ALLOY COMPOSITION OF STEEL FIBERS CRITICAL

- No martensitic transformation observed at RT

• CFRP up to 30 %, MCFRP up to 40 % stiffer at -55 °C compared to RT

• Higher plastic deformation observed for MCFRP under fatigue loading • The inclusion of steel fibers resulted in a more ductile failure behavior

• Up to 8 % martensite measured after CLA tests at -55 °C • Ni and Cr content in the stainless steel fibers critical, even while remaining within the limits of the DIN 1.4301 standard

This project was funded by the German Science Foundation (DFG Project # BA 4073/6-2, BR 4252/2-2)

REFERENCES

- Backe, S., Balle, F., Hannemann, B., Schmeer, S., Breuer, U.: Fatigue properties of multifunctional metal and carbon-fiber-reinforced [1] polymers and intrinsic capabilities for damage monitoring, Fatigue Fract Eng Mater Struct. 42:143–151, 2018.
- Khatri, B., Rehra, J., Schmeer, S., Breuer, U., Balle, F.: Metal/Carbon-Fiber Hybrid Composites—Damage Evolution and Monitoring of [2] Isothermal Fatigue at Low and Elevated Temperatures. J. Compos. Sci., 6(3), 67, 2022.

universitätfreiburg

Prof. Frank Balle frank.balle@inatech.uni-freiburg.de