

Free-edge effects at circular holes in composite laminates under hygrothermomechanical load

Navid Kharghani Christian Mittelstedt

Institute for Leightweight Engineering and Structural Mechanics (LSM) Technical University of Darmstadt Darmstadt, Hesse, Germany

International Conference on Composite Materials (ICCM23) Belfast, Northern Irland August 2023

Application and importance

Objective & Contents

Presenting a complete analytical method to predict the behaviour of 3D stresses sorrounding a hole in composite laminates under mechanical and thermal loads

- Literature •
- Finite element (FE) model
- Analytical solution
 - **Basic formulations** \cap
 - Boundary and continuity conditions Ο
 - Stress solution for the interior region under temperature change Ο
 - Stress solution for the boundary layer region Ο
 - Solution using energy minimization 0
- Results

MASCHINENBAU

We engineer future

Conclusion and future work

Literature

Kharghani, N., Mittelstedt, C. Reduction of free-edge effects around a hole of a composite plate using a numerical layup optimization Composite Structures **2022**

Ko, C-C., Lin, C-C. Method for calculating the interlaminar stresses in symmetric laminates containing a circular hole AIAA J. **1992**

Lekhnitskii, S.G. Theory of elasticity of anisotropic body Holden Day, San Francisco **1963**

Chaleshtari, M.H.B., Khoramishad, H.

Investigation of the effect of cutout shape on thermal stresses in perforated multilayer composites subjected to heat flux using an analytical method European J. of Mechanics - A/Solids 2022

FE model

Alexander Nuhn & Christian Mittelstedt Randspannungskonzentrationen an Kreislöchern in ebenen Laminaten Master Thesis, Technishe Universität Darmstadt **2019**.

Coordinates. aeometrv and material properties

Description of the parameter	Symbol	Value	Unit
Hole radius	R	2.5	mm
Hole position	-	central	-
Ply thickness	h	0.125	mm
Total laminate thicknesses	t	0.5	mm
Number of the plies	N	4	-

Description of the parameter	Symbol	Value	Unit
Longitudinal elasticity modulus	<i>E</i> ₁₁	35	GPa
Transverse elasticity modulus	E ₂₂	9	GPa
Shear modulus	<i>G</i> ₁₂	4.7	GPa
Poisson's ratio	v_{12}	0.28	-
Longitudinal thermal expansion coefficient	α ₁₁	5.5×10^{-6}	K ⁻¹
Transverse thermal expansion coefficient	α ₂₂	2.5×10^{-5}	K ⁻¹

For the zeroth-order n = 0: $(f_{\omega\omega}^{0})^{(k)}$ has been disappeared)

Simplification

$$g_{rr}^{(k)} = G_{1}^{(k)}$$

$$g_{r\varphi}^{(k)} = G_{4}^{(k)}$$

$$g_{r\varphi}^{(k)} = G_{4}^{(k)}$$

$$g_{zz}^{(k)} = \frac{1}{2}G_{1}^{(k)}\Lambda^{2} + G_{2}^{(k)}\Lambda + G_{3}^{(k)}$$

$$g_{\varphi z}^{(k)} = G_{4}^{(k)}\Lambda + G_{5}^{(k)}$$

$$h_{rr}^{(k)} = H_{1}^{(k)}e^{-\xi_{1}P} + H_{2}^{(k)}e^{-\xi_{1}\xi_{2}P}$$

$$h_{r\varphi}^{(k)} = H_{3}^{(k)}e^{-\xi_{1}P} + H_{2}^{(k)}\xi_{1}\xi_{2}e^{-\xi_{1}\xi_{2}P}$$

$$h_{zz}^{(k)} = H_{1}^{(k)}\xi_{1}^{2}e^{-\xi_{1}P} + H_{2}^{(k)}\xi_{1}^{2}\xi_{2}^{2}e^{-\xi_{1}\xi_{2}P}$$

$$h_{\varphi z}^{(k)} = H_{3}^{(k)}\xi_{1}e^{-\xi_{1}P}$$

 ξ_1 and ξ_2 are decay factors

Boundary and continuity conditions

Considering $\varepsilon_{\varphi\varphi}^{0}{}^{(k)} = 0$ in the boundary layer region, $f_{\varphi\varphi}^{0}$ can be determined.

$$\lim_{P \to \infty} \left\{ f_{rr}^{0\,(k)}, f_{r\varphi}^{0\,(k)}, f_{rz}^{0\,(k)}, f_{\varphi z}^{0\,(k)}, f_{zz}^{0\,(k)} \right\} = 0 \qquad k = 1, 2, \dots, N$$

decaying boundary layer stresses
$$f_{ij}^{0^{(k)}}$$
 at infinity

$$f_{rz}^{0}{}^{(k)} = f_{\varphi z}^{0}{}^{(k)} = f_{zz}^{0}{}^{(k)} = 0$$

disappearing interlaminar stresses on the free surfaces

$$\sigma_{rr}^{(k)} = f_{rr}^{0} \stackrel{(k)}{=} + \sigma_{rr}^{0} \stackrel{(k)}{=} 0$$

$$\tau_{r\varphi}^{(k)} = f_{r\varphi}^{0} \stackrel{(k)}{=} + \tau_{r\varphi}^{0} \stackrel{(k)}{=} 0$$

$$f_{rz}^{0} \stackrel{(k)}{=} 0 \qquad \qquad k = 1, 2, ..., N$$

 $f_{rz}^{0\,(k)} = f_{rz}^{0\,(k+1)}$ $f_{\varphi z}^{0\,(k)} = f_{\varphi z}^{0\,(k+1)} \qquad k = 1, 2, ..., N - 1$ $f_{zz}^{0\,(k)} = f_{zz}^{0\,(k+1)}$

along the hole boundary when r = R

through the interface of laminas k and k + 1

MASCHINENBAU We engineer future

TECHNISCHE Stress solution for the interior region under temperature change UNIVERSITÄT $A = A^{(h)} + A^{(p)}$ DARMSTADT $c_{11}\frac{\partial^4 A^{(h)}}{\partial v^4} - 2c_{16}\frac{\partial^4 A^{(h)}}{\partial x \partial v^3} + (2c_{12} + c_{66})\frac{\partial^4 A^{(h)}}{\partial v^2 \partial v^2} - 2c_{26}\frac{\partial^4 A^{(h)}}{\partial v^3 \partial v} + c_{22}\frac{\partial^4 A^{(h)}}{\partial x^4} = 0$ $D_k = \frac{\partial}{\partial y} - \mu_k \frac{\partial}{\partial x}$ $D_1 D_2 D_3 D_4 A^{(h)} = 0$ $c_{11}\mu^4 - 2c_{16}\mu^3 + (2c_{12} + c_{66})\mu^2 - 2c_{26}\mu + c_{22} = 0$ $\mu_1 = \alpha_1 + i\beta_1$ $\mu_3 = \alpha_2 + i\beta_2$ $\mu_2 = \alpha_1 - i\beta_1$ $\mu_{4} = \alpha_{2} - i\beta_{2}$ for symmetric laminate ($c_{16} = c_{26} = 0$) $c_{11}\mu^4 + (2c_{12} + c_{66})\mu^2 + c_{22} = 0$ $A = A_1(Z_1) + A_2(Z_2) + \overline{A_1(Z_1)} + \overline{A_2(Z_2)} + A^{(p)}$ $A^{(h)} = 2Re \sum A_k(Z_k)$ $\frac{dA}{dz} = \Omega_1(Z_1) + \Omega_2(Z_2) + \overline{\Omega_1(Z_1)} + \overline{\Omega_2(Z_2)} + \Omega^{(p)}$ $Z_k = x + \mu_k y \quad k = 1,2$

Stress solution for the interior region under biaxial tension

Regarding to Lekhnitskii's theory of 2D anisotropic elasticity:

$$\sigma_{rr}^{0} = 2Re[(\sin\varphi - \mu_{1}\cos\varphi)^{2}\Psi_{1}' + (\sin\varphi - \mu_{2}\cos\varphi)^{2}\Psi_{2}'] + \sigma_{xx}^{\infty}\cos^{2}\varphi + \sigma_{yy}^{\infty}\sin^{2}\varphi + 2\tau_{xy}^{\infty}\sin\varphi\cos\varphi$$

 $\sigma_{\varphi\varphi}^{0} = 2Re[(\cos\varphi + \mu_{1}\sin\varphi)^{2}\Psi_{1}' + (\cos\varphi + \mu_{2}\sin\varphi)^{2}\Psi_{2}'] + \sigma_{xx}^{\infty}\sin^{2}\varphi + \sigma_{yy}^{\infty}\cos^{2}\varphi - 2\tau_{xy}^{\infty}\sin\varphi\cos\varphi$

 $\tau_{r\varphi}^{0} = 2Re[(\sin\varphi - \mu_{1}\cos\varphi)(\cos\varphi + \mu_{1}\sin\varphi)\Psi_{1}' + (\sin\varphi - \mu_{2}\cos\varphi)(\cos\varphi + \mu_{2}\sin\varphi)\Psi_{2}'] + (\sigma_{yy}^{\infty} - \sigma_{xx}^{\infty})\sin\varphi\cos\varphi + \tau_{xy}^{\infty}(\cos^{2}\varphi - \sin^{2}\varphi)$

 $\sigma_{xx}^{\infty}, \sigma_{yy}^{\infty}$, and τ_{xy}^{∞} are far-field applied stresses

$$\begin{split} \Psi_1' &= \frac{-i}{2(\mu_1 - \mu_2)(1 + i\mu_1)} \Big\{ \sigma_{xx}^{\infty} + \sigma_{yy}^{\infty} i\mu_2 + \tau_{xy}^{\infty}(i + \mu_2) \Big\} \times \left\{ 1 - \frac{r(\cos\varphi + \mu_1\sin\varphi)}{\sqrt{r^2(\cos\varphi + \mu_1\sin\varphi)^2 - R^2(1 + \mu_1^2)}} \right\} \\ \Psi_2' &= \frac{i}{2(\mu_1 - \mu_2)(1 + i\mu_1)} \Big\{ \sigma_{xx}^{\infty} + \sigma_{yy}^{\infty} i\mu_1 + \tau_{xy}^{\infty}(i + \mu_2) \Big\} \times \left\{ 1 - \frac{r(\cos\varphi + \mu_2\sin\varphi)}{\sqrt{r^2(\cos\varphi + \mu_2\sin\varphi)^2 - R^2(1 + \mu_2^2)}} \right\} \end{split}$$

 $i = \sqrt{-1}$, μ_1 , and μ_2 are the complex roots can be calculated from the characteristic equation

Stress solution for the boundary layer region

The in-plane stress components for ply "k" using CLPT and coordinate transformation is:

$$\begin{cases} \sigma_{rr}^{0} \\ \sigma_{\varphi\varphi}^{0} \\ \tau_{r\varphi}^{0} \end{cases}^{(k)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{(k)} \begin{cases} \sigma_{rr}^{0} \\ \sigma_{\varphi\varphi}^{0} \\ \tau_{r\varphi}^{0} \end{cases}$$

$$H_1^{(k)} = H_2^{(k)}\xi_2 = -\frac{\xi_2}{\xi_2 - 1}a_{12}^{(k)}\sigma_{\varphi\varphi}^0|_{P=0}$$
$$H_2^{(k)} = \frac{1}{\xi_2 - 1}a_{12}^{(k)}\sigma_{\varphi\varphi}^0|_{P=0}$$
$$H_3^{(k)} = -a_{32}^{(k)}\sigma_{\varphi\varphi}^0|_{P=0}$$

MASCHINENBAU We engineer future

$[a]^{(k)} = \begin{bmatrix} \cos^2\theta & \sin^2\theta & 2\sin\theta\cos\theta\\ \sin^2\theta & \cos^2\theta & -2\sin\theta\cos\theta\\ -\sin\theta\cos\theta & \sin\theta\cos\theta & \cos^2\theta - \sin^2\theta \end{bmatrix} [\bar{Q}]^{(k)}[b] \begin{bmatrix} -\frac{1}{2} & -1$	$ \cos^2 \theta \\ \sin^2 \theta \\ -\sin \theta \cos \theta $	$\frac{2\sin\theta\cos\theta}{-2\sin\theta\cos\theta}\Big]^{-1}$ $\left.\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta-\sin^2\theta}\right]^{-1}$

[b] is the laminate-equivalent anisotropic compliance matrix

considering constant values of ξ_1 and ξ_2 through the laminate due to the interface traction continuity:

$$\begin{aligned} f_{rr}^{0}{}^{(k)} &= H_{2}^{(k)} \left(e^{-\xi_{1}\xi_{2}P} - e^{-\xi_{1}P} \right) \\ f_{r\varphi}^{0}{}^{(k)} &= H_{3}^{(k)} - e^{-\xi_{1}P} \\ f_{rz}^{0}{}^{(k)} &= \left(\Lambda + G_{2}^{(k)} \right) H_{2}^{(k)} \xi_{1} \xi_{2} \left(e^{-\xi_{1}\xi_{2}P} - e^{-\xi_{1}P} \right) \\ f_{\varphi z}^{0}{}^{(k)} &= \left(\Lambda + G_{5}^{(k)} \right) H_{3}^{(k)} \xi_{1} e^{-\xi_{1}P} \\ f_{zz}^{0}{}^{(k)} &= \left(\frac{1}{2} \Lambda^{2} + G_{2}^{(k)} \Lambda + G_{3}^{(k)} \right) H_{2}^{(k)} \xi_{1}{}^{2} \xi_{2} \left(\xi_{2} e^{-\xi_{1}\xi_{2}P} - e^{-\xi_{1}P} \right) \\ f_{\varphi \varphi}^{0}{}^{(k)} &= - \left(\bar{S}_{12}^{(k)} f_{rr}^{(k)} + \bar{S}_{23}^{(k)} f_{zz}^{(k)} + \bar{S}_{26}^{(k)} f_{r\varphi}^{(k)} \right) / \bar{S}_{22}^{(k)} \end{aligned}$$

$$= \sigma_{rr}^{0} {}^{(k)}_{k} + f_{rr}^{0} {}^{(k)}_{k} = \sigma_{\varphi\varphi}^{0} {}^{(k)}_{k} + f_{\varphi\varphi}^{0} {}^{(k)}_{k} = \tau_{r\varphi}^{0} {}^{(k)}_{k} + f_{r\varphi}^{0} {}^{(k)}_{k} = \tau_{r\varphi}^{0} {}^{(k)}_{k} + f_{r\varphi}^{0} {}^{(k)}_{k}$$

Jφz $f_{zz}^{0}^{(k)}$

 $\sigma_{\phi'}$

 $\tau_{r\varphi}$

Solution using energy minimization

- TECHNISCHE UNIVERSITÄT DARMSTADT
- The problem is solved using minimum potential energy principle. It is necessary to calculate ξ_1 and ξ_2 for the zeroth order.
- The external work is dependent to ξ_1 and ξ_2 . Therefore it doesn't interfere in the the energy equation.

$$\begin{split} \delta\Pi &= \delta \left\{ \sum_{k=1}^{N} \frac{1}{2} \int_{-\pi}^{\pi} \int_{0}^{1} \int_{0}^{\infty} \left[\left(\tilde{S}_{11} f_{rr}^{0}{}^{(k)} + \tilde{S}_{13} f_{zz}^{0}{}^{(k)} + \tilde{S}_{16} f_{r\varphi}^{0}{}^{(k)} \right) f_{rr}^{0}{}^{(k)} + \left(\tilde{S}_{13} f_{rr}^{0}{}^{(k)} + \tilde{S}_{36} f_{r\varphi}^{0}{}^{(k)} \right) f_{zz}^{0}{}^{(k)} \\ &+ \left(\tilde{S}_{16} f_{rr}^{0}{}^{(k)} + \tilde{S}_{36} f_{zz}^{0}{}^{(k)} + \tilde{S}_{66} f_{r\varphi}^{0}{}^{(k)} \right) f_{r\varphi}^{0}{}^{(k)} + \left(\tilde{S}_{44} f_{\varphi z}^{0}{}^{(k)} + \tilde{S}_{45} f_{rz}^{0}{}^{(k)} \right) f_{\varphi z}^{0}{}^{(k)} + \left(\tilde{S}_{45} f_{\varphi z}^{0}{}^{(k)} + \tilde{S}_{55} f_{rz}^{0}{}^{(k)} \right) f_{rz}^{0}{}^{(k)} \right] \times (R \\ &+ h P) h^2 dP d\Lambda d\varphi \bigg\} \end{split}$$

 $\frac{\partial \pi}{\partial \xi_{1}} = \xi_{1}^{5} R \left(3\xi_{2}^{5} U_{33} + 3\xi_{2}^{4} U_{33} \right) + \xi_{1}^{5} h \left(2\xi_{2}^{4} U_{33} \right) + \xi_{1}^{3} R \left[\xi_{2}^{4} (-2U_{13} - 2U_{36} + U_{44} + 2U_{45} + U_{55}) + \xi_{2}^{3} (-2U_{13} - 2U_{36} + 2U_{44} + 2U_{45} + U_{55}) + \xi_{2}^{2} R U_{44} \right] \\ - \xi_{1} R \left[\xi_{2}^{4} (U_{11} + 2U_{16} + U_{66}) + \xi_{2}^{3} (4U_{11} + 6U_{16} + 2U_{66}) + \xi_{2}^{2} (4U_{11} + 4U_{16} + U_{66}) + \xi_{2} U_{11} \right] \\ - h \left[\xi_{2}^{4} (U_{11} + 2U_{16} + U_{66}) + \xi_{2}^{3} (4U_{11} + 6U_{16} + 2U_{66}) + \xi_{2}^{2} (8U_{11} + 8U_{16} + U_{66}) + 4\xi_{2} U_{11} + U_{11} \right] = 0$ $\frac{\partial \pi}{\partial \xi_{2}} = \xi_{2}^{6} R \left(\xi_{1}^{5} U_{33} \right) + \xi_{2}^{5} \left(3\xi_{1}^{5} U_{33} \right)$

 $+ \xi_{2}^{4} \Big[2\xi_{1}^{5} R U_{33} + 2\xi_{1}^{4} h U_{33} + \xi_{1}^{3} R (-2U_{13} - 2U_{36} + 2U_{45} + U_{55}) - \xi_{1}^{2} h (-2U_{13} - 3U_{36} + U_{45} + U_{55}) - \xi_{1} R \Big(2U_{11} + 2U_{16} - h (U_{11} + U_{16}) \Big) \Big] \\ + \xi_{2}^{3} \Big[\xi_{1}^{3} R (-2U_{13} - 2U_{36} + 2U_{45} + U_{55}) + \xi_{1}^{2} (-2U_{13} - U_{36} + 3U_{45} + U_{55}) - \xi_{1} R (4U_{11} + 2U_{16}) - h (6U_{11} + 5U_{16}) \Big] \\ - \xi_{2}^{2} (3\xi_{1} R U_{11} + 6h U_{11}) - \xi_{2} (\xi_{1} R U_{11} + 4h U_{11}) - h U_{11} = 0$

32-point Gaussian quadrature formulation
$U_{11} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{11}^{(k)} m_1^2 n. d\varphi$
$U_{13} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{13}^{(k)} m_1^2 n \left(\frac{1}{6} + \frac{1}{2} G_2^{(k)} + G_3^{(k)} \right) d\varphi$
$U_{16} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{16}^{(k)} m_1 m_2 n. d\varphi$
$U_{33} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{33}^{(k)} m_1^2 n \left(\frac{1}{20} + \frac{1}{4} G_2^{(k)} + \frac{1}{3} G_2^{(k)^2} + \frac{1}{3} G_3^{(k)} + \frac{G_3^{(k)^2}}{63} + \frac{G_3^{(k)}}{63} + \frac{G_3^{(k)}}{63} + \frac{G_3^{(k)}}{63} + \frac{1}{3} G_3^{(k)} + \frac{1}{3} G_3^{($
$U_{36} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{36}^{(k)} m_1 m_2 n \left(\frac{1}{6} + \frac{1}{2} G_2^{(k)} + G_3^{(k)} \right) d\varphi$
$U_{66} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{66}^{(k)} m_2^2 n. d\varphi$
$U_{44} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{44}^{(k)} m_2^2 n \left(\frac{1}{3} + G_5^{(k)} + G_5^{(k)^2} \right) d\varphi$
$U_{45} = \sum_{\substack{k=1\\N}}^{N} \int_{-\pi}^{\pi} \tilde{S}_{45}^{(k)} m_1 m_2 n \left(\frac{1}{3} + \frac{1}{2} \left(G_2^{(k)} + G_5^{(k)} \right) + G_2^{(k)} G_5^{(k)} \right) d\varphi$
$U_{55} = \sum_{k=1}^{N} \int_{-\pi}^{\pi} \tilde{S}_{55}^{(k)} m_1^2 n \left(\frac{1}{3} + G_2^{(k)} + G_2^{(k)^2} \right) d\varphi$

MASCHINENBAU We engineer future

$$m_1 = a_{12}^{(k)}, m_2 = a_{32}^{(k)}, n = {\sigma_{\varphi\varphi}^0}^2|_{\rm P=0}$$

Results for pure temprature change (Circumferential directions)

Comparison of the maximum interlaminar peeling stress through the middle interface along a quarter of the circumferential direction on the edge of the hole for two values of temperature changes using FEM and boundary layer Comparison of the maximum interlaminar peeling stress through the middle interface at three circumferential positions on the edge of the hole respect to temperature changes using FEM and boundary layer

Results (radial directions)

Comparison of the maximum **interlaminar peeling stress through the middle interface** along two radial directions for a certain temperature change using FEM and boundary layer

Comparison of the maximum **interlaminar shear stress through 45°/-45° interface** along two radial directions for a certain temperature change using FEM and boundary layer

Results (combined biaxial and temprature change)

Comparison of the maximum interlaminar peeling stress through the middle interface along a quarter of the circumferential direction on the edge of the hole for pure temperature change and combined temperature change with biaxial tension using FEM and boundary layer Comparison of the maximum interlaminar shear stress through $45^{\circ}/-45^{\circ}$ interface along a quarter of the circumferential direction on the edge of the hole for **combined temperature** change and biaxial tension using FEM and boundary layer

Comparison of the maximum interlaminar peeling stress through the middle interface along a quarter of the circumferential direction on the edge of the hole **for different values of biaxial tension** using boundary layer method

Comparison of the maximum interlaminar peeling stress through the middle interface along a quarter of the circumferential direction on the edge of the hole **for different values of temperature change** using boundary layer method

Conclusion and future work

- The presented method is capable of predicting peeling and shear interlaminar stresses surrounding a hole in composite lamiantes which are thin and the radius of the hole is small enough in comparison to the dimension of the laminate in both pure temprature change and combined biaxial tension and temprature change.
- With increasing the variation of temprature, the interlaminar peeling stress increases non-lineraly and the discrepancy between the \geq boundary layer method and FEM increases too.
- \geq Along the radial directions at the distance of **1.3R** from the edge of the whole, the peeling and shear interlaminar stresses decay. However in **1.1R**, about 50% of the maximum stresses on the edge vanishes.
- Applying biaxial tension reduces the interlaminar stresses that have been generated by the temprature change. \geq
- Changing the value of temprature is more effective than varying the biaxial tension on the peeling interlaminar stresses. \geq

Future study:

- The effect of moisture change can be investigated by using β instead of α and M instead of T.
- β : Moisture expansion coefficient

M: Moisture content = $\frac{Mass of absorbed moisture in the material}{Mass of absorbed moisture in the material}$

Mass of dry material

Thank you for your attention!

Free-edge effects at circular holes in composite laminates under hygrothermomechanical load

Dr. - Ing. Navid Kharghani

+49 6151-16 220246

⊠ navid.kharghani@klub.tu-darmstadt.de

Technical University of Darmstadt Institute for Leightweight Engineering and Structural Mechanics (LSM) Darmstadt, Hesse, Germany www.klub.tu-darmstadt.de

