23rd International Conference on Composite Materials - Computational methods, Session 7

1 AUG 2023

COMPARISON OF DAMAGE CHARACTERISTICS OF ADHESIVELY BONDED AND RIVET-CONNECTED EVTOL WING UNDER BIRD-STRIKE

Eray Kayar^a, Zafer Kazancı^a, Gasser Abdelal^a and Brian Falzon^b

- a. School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, United Kingdom
- b. School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia

Motivation

Comparison of damage results at the parts of the rivet-connected and the adhesively bonded configurations of a composite eVTOL wing leading edge.

Investigation of the best absorbent core material to be implemented to develop the lightest composite eVTOL leading edge which can stand against bird impact.

Introduction and Motivation

QUEEN'S

BELFAST

VFRSITY

1

Introduction and Motivation

[2] M. Guida, F. Marulo, F. Z. Belkhelfa, and P. Russo, A review of the bird impact process and validation of the SPH impact model for aircraft structures, Progress in Aerospace Sciences, 129, 2022.

Numerical Models & Cases Adhesively Bonded and Rivet-connected eVTOL Wing Under Bird-Strike

Figure – 5 Skin, honeycomb and auxiliary spar attachment configurations at the leading edge of the wing, The rivet-connected configuration

Figure – 6 Skin, honeycomb and auxiliary spar attachment configurations at the leading edge of the wing, The bonded configuration

ADVANCED COMPOSI

Material Properties & Test Campaign (UD Skin & Aramid Core)

• ASTM C365 - Applied Force vs Displacement

0.5 min/mm 6.35 x 50 x 50 mm

 UD; Stacking: [0/90/-45/45]3s UD M91/IM7 Each ply: 0.184mm (24 plies Facing & 24 plies Backing) <image><image><image><image>

6

www.qub.ac.uk/sites/acrg Material Properties & Test Campaign (UD Skin & Aramid Core)

• ASTM C364 5 min/mm 6.35 x 50 x 50 mm

Figure – 11 ASTM C364 (Test System)

Figure – 12 ASTM C364 (Compacted Specimen)

* Experiment-3 is failed because of stability problems. Therefore, Experiment-4 supersedes, Experiment-3.
** Experiment-5 is failed because of stability problems. Therefore, Experiment-6 supersedes, Experiment-5.

ADVANCED COMPOSITES

Loading Condition – Normal Impact

• The Impact Condition vs Time

FEA Results 1st Principal Stress Distribution, Lower Attachment

UFFN'S FEA Results - 1st Principal Stress BELFAST 120 120 110 110 100 100 1st Principal Stress [MPa] 1st Principal Stress [MPa] 90 90 80 80 70 70 Upper Upper Attach Connection 60 60 Lower 50 50 Lower Attach Connection 40 40 30 Spar 30 20 20 10 10 0 9 10 0 10 0 9 Time [ms] Time [ms] Figure – 16 1st Principal Stress Distribution at The Attachment Parts and Figure – 15 1st Principal Stress Distribution at The Attachment Parts Spar of The Adhesively Bonded Case and Spar of The Rivet Connected Case $\left(\frac{1}{X_t} - \frac{1}{X_c}\right)\sigma_1 + \left(\frac{1}{Y_t} - \frac{1}{Y_c}\right)\sigma_2 + \frac{\sigma_1^2}{X_t X_c} + \frac{\sigma_2^2}{Y_t Y_c} + \frac{\tau_{12}^2}{S^2} + 2F_{12}\sigma_1\sigma_2 = (\text{Failure Index}) \quad \dots (1)$ Tsai-Wu Failure Theory $\sigma_1, \sigma_2, S \text{ and } \tau_{12}$ F_{12} X_t, X_c, Y_t and Y_c **FEA results** Material properties Numeric parameter $\left[\frac{\sigma_1^2}{X_t X_c} + \frac{\sigma_2^2}{Y_t Y_c} + 2F_{12}\sigma_1\sigma_2 + \frac{\tau_{12}^2}{S^2}\right]SR^2 + \sigma_1\left[\frac{1}{X_t} - \frac{1}{X_c}\right] + \sigma_2\left[\frac{1}{Y_t} - \frac{1}{Y_c}\right]SR = 1$

10

Shear Stress & Safety Reserve Results

Table – 1 Shear Stress Resultsat The Attachment Parts and Spar of The Adhesively Bonded Case											
Time	Rivet-	Adhesively	Rivet-	Adhesively	Rivet-	Adhesively					
	connected	Bonded	connected	Bonded	connected	Bonded					
[ms]											
	Upper Attachment	Upper Connection	Lower Attachment	Lower Connection	Spar	Spar					
2.5	52.9	29.3	51.3	37.0	36.2	9.4					

	at T							
Time	Rivet-	Adhesively	Rivet-	Adhesively	Rivet-	Adhesively		A
	connected	Bonded	connected	Bonded	connected	Bonded		>1 Safe
[ms]							Safety Reserve	
	Upper	Upper	Lower	Lower	Spar	Spar		≤1 Not safe
	Attachment	Connection	Attachment	Connection				+
2.5	9.56e-3	5.3e-3	9.27e-3	6.69e-3	6.54e-3	1.7e-3	[Unitless]	

ADVANCED COMPOSITES

11

Concluding Remarks & Future Work

- Lower principal stress and shear stress results are evaluated for the adhesively bonded case. Moreover, the safety reserve results are lower than the rivet-connected case. However, both cases are beyond safe region. Therefore, the following tasks will be performed as a future work to compare these cases and make a reliable comment;
- Results under various stacking configurations
- Investigation of connector fails (i.e Pull-through mode)

Eray Kayar Doctoral Researcher Structural Analysis Engineer

Ashby Building Stranmillis Road Belfast, UK BT9 5AH

+44 (0) 75 1816 6159 +44 (0) 28 9097 4147

Thank you!

Questions & Answers