

istn Institute of Fluid Mechanics

Fiber orientation tensor approximations based on an implicitly defined closure approach

Tobias Karl, Matti Schneider, Thomas Böhlke | ICCM23 | August 1, 2023

www.kit.edu

Contents

- Fiber orientation tensors
- Required algebraic closure properties
- Implicit closure approach in general
- Special cases: Implicit quadratic/hybrid closure
- Estimation of effective properties
- Fiber orientation evolution prediction

Tucker (2022) Figure: Karl et al. (2021)

Motivation

- Application of short fiber reinforced polymers in lightweight design
- Injection molding process
- Fiber orientation evolution during mold filling
- Final effective anisotropy depends on local fiber orientation

Karlsruhe Institute of Technology

Fiber orientation tensors

Second- and fourth-order orientation tensors of the first kind

$$\mathbf{N} = \int_{\mathcal{S}} f(\mathbf{n}) \mathbf{n} \otimes \mathbf{n} \, \mathrm{d}S$$
$$\mathbb{N} = \int_{\mathcal{S}} f(\mathbf{n}) \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \, \mathrm{d}S$$

Fiber orientation evolution equation

$$\dot{N} = WN - NW + rac{lpha^2 - 1}{lpha^2 + 1} \Big(DN + ND - 2\mathbb{N}[D] \Big) + 2C_{\mathrm{I}}\dot{\gamma}(I - 3N)$$

• Closure function \mathbb{F} required for closure

 $\mathbb{N} \approx \mathbb{F}(N)$

Kanatani (1984) Folgar & Tucker (1984) Advani & Tucker (1987)

Required algebraic properties of $\mathbb{F}(N)$

- Full index symmetry
- Contraction condition $\mathbb{N}[I] = N$ or $N_{ijkk} = N_{ij}$
- Trace condition $\mathbb{N} \cdot \mathbb{I} = N_{klkl} = 1$
- Trace-preserving property during evolution $tr(\mathbb{N}[\mathbf{D}]) = \mathbf{N} \cdot \mathbf{D} = N_{ij}D_{ij}$

Advani & Tucker (1987) Petty et al. (1999)

Implicit closure approach

Closure tensor B (unknown) is used instead of the given N

 $\mathbb{N} \approx \mathbb{F}(\boldsymbol{B})$

 $\mathbb{F}(B)[I] = N$

Closure tensor B is implicitly defined via the contraction condition

Function F (whose roots B are sought)

 $F(B) = \mathbb{F}(B)[I] - N$

Newton's method

$$\boldsymbol{B}_{n+1} = \boldsymbol{B}_n - \left(\frac{\partial \boldsymbol{F}(\boldsymbol{B}_n)}{\partial \boldsymbol{B}_n}\right)^{-1} [\boldsymbol{F}(\boldsymbol{B}_n)]$$

• If \mathbb{F} is modeled fully symmetric, all properties of \mathbb{N} are met

Karlsruhe Institute of Technology

Implicit quadratic closure (SIQ)

Chosen closure function

$$egin{aligned} \mathbb{N} &pprox \mathbb{F}(oldsymbol{B}) = ext{sym}(oldsymbol{B} \otimes oldsymbol{B}) \ &= rac{1}{3} \Big(oldsymbol{B} \otimes oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} + oldsymbol{B} oldsymbol{B} + oldsymb$$

Contraction condition

$$egin{aligned} m{F}(m{B}) &= \mathbb{F}(m{B})[m{I}] - m{N} \ &= rac{1}{3} \Big(ext{tr}(m{B})m{B} + 2m{B}^2 \Big) - m{N} \end{aligned}$$

- Exact for UD, ISO and PI orientation states
- 1D formulation possible

Implicit hybrid closure (SIHYB)

Chosen closure function

$$\mathbb{F}(\boldsymbol{B}) = (1-k) \left(-\frac{3}{35} \operatorname{sym}(\boldsymbol{I} \otimes \boldsymbol{I}) + \frac{6}{7} \operatorname{sym}(\boldsymbol{I} \otimes \boldsymbol{B}) \right) + k \operatorname{sym}(\boldsymbol{B} \otimes \boldsymbol{B})$$
$$k = 1 - 27 \operatorname{det}(\boldsymbol{N})$$

Contraction condition

$$\boldsymbol{F}(\boldsymbol{B}) = \frac{1-k}{7} \Big(\operatorname{tr}(\boldsymbol{B}) - 1 \Big) \boldsymbol{I} + \Big(1 - k + \frac{k}{3} \operatorname{tr}(\boldsymbol{B}) \Big) \boldsymbol{B} + \frac{2k}{3} \boldsymbol{B}^2 - \boldsymbol{N},$$

- Exact for UD, ISO and PI orientation states
- 1D formulation possible

Estimation of effective properties

Fiber orientation state

$$N_{ij} = \begin{pmatrix} 0.392 & 0.111 & -0.006 \\ 0.111 & 0.584 & -0.005 \\ -0.006 & -0.005 & 0.024 \end{pmatrix}$$

• Mori-Tanaka model with orientation average $\langle \cdot \rangle_{\mathsf{F}}$

$$\begin{split} \bar{\mathbb{C}} &= \mathbb{C}_{M} + c_{F} \Big(c_{F} \delta \mathbb{C}^{-1} + c_{M} \big\langle \big(\delta \mathbb{C}^{-1} + \mathbb{P}_{0} \big)^{-1} \big\rangle_{F}^{-1} \Big)^{-1} \\ \bar{\mathbb{V}} &= \mathbb{C}_{M} + \frac{c_{F}}{c_{M}} \big\langle \mathbb{P}_{0}^{-1} \big\rangle_{F} \end{split}$$

Aspect ratio \alpha = 26

- Fiber volume fraction c_F = 0.13
- PP matrix (E = 1.6 GPa, $\nu = 0.4$) and glass fibers (E = 73 GPa, $\nu = 0.22$)

Müller et al. (2016) Mori & Tanaka (1973) Benveniste (1987) Schürmann (2007) Bertóti & Böhlke (2017)

Effective stiffness

Effective viscosity

Fiber orientation evolution (shear flow, $\alpha ightarrow \infty$)

13/14 August 1, 2023 T. Karl et al.: Fiber orientation tensor approximations based on an implicitly defined closure approach

Summary and conclusion

- Implicit closure approach based on contraction condition
- Fully symmetric implicit closure meets all algebraic requirements
- ID formulation for both quadratic and hybrid approach
- Reliable estimation of anisotropic properties
- Fiber orientation evolution shows oscillations in simple shear flow
- Low-cost MEM approximation

The partial financial support by the Elisabeth and Friedrich Boysen Foundation is gratefully acknowledged.

Thank you for your kind attention.

M.Sc. Tobias Karl Institute of Engineering Mechanics Chair for Continuum Mechanics Karlsruhe Institute of Technology (KIT) ⊠ tobias.karl@kit.edu

Appendix: Computational effort

Absolute computation time t_c and approxi-		
mate relative	computation tim	le t_{rel} for all
considered closure approximations.		
Closure	$t_{\rm c}$ in s	$t_{\rm rel}$ in %
MEM	0.31688170	486024
ACG	0.11489970	176230
SIHYB	0.00011718	180
SIQ	0.00007490	115
IBOF	0.00006520	100
HYB	0.00001681	26
SQC	0.00000697	11
QC	0.00000186	3

Appendix: 1D formulation of SIQ

• F(B) = 0 can be written as follows with s = tr(B)/4

$$B^2+2sB=rac{3}{2}N$$

Completing the square

$$(\boldsymbol{B}+\boldsymbol{s}\boldsymbol{l})^2=\frac{3}{2}\boldsymbol{N}+\boldsymbol{s}^2\boldsymbol{l}$$
 \iff $\boldsymbol{B}=\sqrt{\frac{3}{2}\boldsymbol{N}+\boldsymbol{s}^2\boldsymbol{l}}-\boldsymbol{s}\boldsymbol{l}$

Trace of both sides (*B* and *N* share the same eigensystem)

$$(d+4)s = \sum_{i=1}^d \sqrt{\frac{3\lambda_i}{2} + s^2}$$

Karlsruhe Institute of Technology

Appendix: 1D formulation of SIQ

• Newton's method for s (fixed λ_i and d)

$$f(s)=(d+4)s-\sum_{i=1}^d\sqrt{rac{3\lambda_i}{2}+s^2}$$
 $f'(s)=4+\sum_{i=1}^d\underbrace{\left(1-rac{s}{\sqrt{rac{3\lambda_i}{2}+s^2}}
ight)}_{\geq 0}\geq 4$

Eigenvalues of **B**

$$\mu_i = \sqrt{\frac{3\lambda_i}{2} + s^2} - s$$

Appendix: References

Advani & Tucker (1987): The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of Rheology 31, 751-784

Benveniste (1987): A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials 6, 147-157 Bertóti & Böhlke (2017): Flow-induced anisotropic viscosity in short FRPs, Mechanics of Advanced Materials and Modern Processes 3, 1-12

Folgar & Tucker (1984): Orientation behavior of fibers in concentrated suspensions, Journal of Reinforced Plastics and Composites 3, 98-119

Kanatani (1984): Distribution of directional data and fabric tensors, International Journal of Engineering Science 22, 149-164

Karl et al. (2021): Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites, Acta Mechanica 232, 2249-2268

Karl et al. (2023): On fully symmetric implicit closure approximations for fiber orientation tensors, Journal of Non-Newtonian Fluid Mechanics 318, 105049

Mori & Tanaka (1973): Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica 21, 571-574

Müller et al. (2016): Homogenization of elastic properties of short-fiber reinforced composites based on measured microstructure data, Journal of Composite Materials 50, 297-312

Petty et al. (1999): Flow-induced alignment of fibers, Proceedings of 12th International Conference on Composite Materials ICCM-12, Paris Schürmann (2007): Konstruieren mit Faser-Kunststoff-Verbunden, Springer, Berlin

Tucker (2022): Fundamentals of Fiber Orientation - Description, Measurement and Prediction, Hanser, München