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Tucker (2022)
Figure: Karl et al. (2021)

Motivation



Second- and fourth-order orientation tensors of the first kind

N =

∫
S

f (n)n⊗n dS

N =

∫
S

f (n)n⊗n⊗n⊗n dS

Fiber orientation evolution equation

Ṅ = WN − NW +
α2 − 1
α2 + 1

(
DN + ND − 2N[D]

)
+ 2CIγ̇(I − 3N)

Closure function F required for closure
N ≈ F(N)
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Kanatani (1984)
Folgar & Tucker (1984)
Advani & Tucker (1987)

Fiber orientation tensors



Full index symmetry

Contraction condition N[I] = N or Nijkk = Nij

Trace condition N · I = Nklkl = 1

Trace-preserving property during evolution tr(N[D]) = N · D = NijDij
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Advani & Tucker (1987)
Petty et al. (1999)

Required algebraic properties of F(N)



Closure tensor B (unknown) is used instead of the given N

N ≈ F(B)

Closure tensor B is implicitly defined via the contraction condition

F(B)[I] = N

Function F (whose roots B are sought)

F (B) = F(B)[I]− N

Newton’s method

Bn+1 = Bn −
(
∂F (Bn)

∂Bn

)−1

[F (Bn)]

If F is modeled fully symmetric, all properties of N are met
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Karl et al. (2023)

Implicit closure approach



Chosen closure function

N ≈ F(B) = sym(B⊗B)

=
1
3

(
B⊗B + B�B + (B�B)TR

)
Nijkl =

1
3

(
BijBkl + Bik Blj + BilBkj

)
Contraction condition

F (B) = F(B)[I]− N

=
1
3

(
tr(B)B + 2B2

)
− N

Exact for UD, ISO and PI orientation states

1D formulation possible
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Implicit quadratic closure (SIQ)



Chosen closure function

F(B) = (1− k)
(
− 3

35
sym(I⊗I) +

6
7
sym(I⊗B)

)
+ k sym(B⊗B)

k = 1− 27det(N)

Contraction condition

F (B) =
1− k

7

(
tr(B)− 1

)
I +
(

1− k +
k
3
tr(B)

)
B +

2k
3

B2 − N,

Exact for UD, ISO and PI orientation states

1D formulation possible

8/14 August 1, 2023 T. Karl et al.: Fiber orientation tensor approximations based on an implicitly defined closure approach

Karl et al. (2023)

Implicit hybrid closure (SIHYB)



Fiber orientation state

Nij =

 0.392 0.111 −0.006
0.111 0.584 −0.005
−0.006 −0.005 0.024


Mori-Tanaka model with orientation average 〈·〉F

C̄ = CM + cF

(
cFδC−1 + cM

〈(
δC−1 + P0

)−1〉−1

F

)−1

V̄ = CM +
cF

cM

〈
P−1

0

〉
F

Aspect ratio α = 26

Fiber volume fraction cF = 0.13

PP matrix (E = 1.6 GPa, ν = 0.4) and glass fibers (E = 73 GPa, ν = 0.22)
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Müller et al. (2016)
Mori & Tanaka (1973)
Benveniste (1987)
Schürmann (2007)
Bertóti & Böhlke (2017)

Estimation of effective properties
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Effective stiffness
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Effective viscosity
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Fiber orientation evolution (shear flow, α→∞)
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Fiber orientation evolution (shear flow, α→∞)



Implicit closure approach based on contraction condition

Fully symmetric implicit closure meets all algebraic requirements

1D formulation for both quadratic and hybrid approach

Reliable estimation of anisotropic properties

Fiber orientation evolution shows oscillations in simple shear flow

Low-cost MEM approximation
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Summary and conclusion
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Appendix: Computational effort



F (B) = 0 can be written as follows with s = tr(B)/4

B2 + 2sB =
3
2

N

Completing the square

(B + sI)2 =
3
2

N + s2I ⇐⇒ B =

√
3
2

N + s2I − sI

Trace of both sides (B and N share the same eigensystem)

(d + 4)s =
d∑

i=1

√
3λi

2
+ s2
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Appendix: 1D formulation of SIQ



Newton’s method for s (fixed λi and d)

f (s) = (d + 4)s −
d∑

i=1

√
3λi

2
+ s2

f ′(s) = 4 +
d∑

i=1

1− s√
3λi

2
+ s2


︸ ︷︷ ︸

≥0

≥ 4

Eigenvalues of B

µi =

√
3λi

2
+ s2 − s
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Appendix: 1D formulation of SIQ



Advani & Tucker (1987): The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of Rheology 31,
751-784
Benveniste (1987): A new approach to the application of Mori-Tanaka’s theory in composite materials, Mechanics of Materials 6, 147-157
Bertóti & Böhlke (2017): Flow-induced anisotropic viscosity in short FRPs, Mechanics of Advanced Materials and Modern Processes 3,
1-12
Folgar & Tucker (1984): Orientation behavior of fibers in concentrated suspensions, Journal of Reinforced Plastics and Composites 3,
98-119
Kanatani (1984): Distribution of directional data and fabric tensors, International Journal of Engineering Science 22, 149-164
Karl et al. (2021): Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites, Acta Mechanica
232, 2249-2268
Karl et al. (2023): On fully symmetric implicit closure approximations for fiber orientation tensors, Journal of Non-Newtonian Fluid
Mechanics 318, 105049
Mori & Tanaka (1973): Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica 21,
571-574
Müller et al. (2016): Homogenization of elastic properties of short-fiber reinforced composites based on measured microstructure data,
Journal of Composite Materials 50, 297-312
Petty et al. (1999): Flow-induced alignment of fibers, Proceedings of 12th International Conference on Composite Materials ICCM-12, Paris
Schürmann (2007): Konstruieren mit Faser-Kunststoff-Verbunden, Springer, Berlin
Tucker (2022): Fundamentals of Fiber Orientation - Description, Measurement and Prediction, Hanser, München

19/14 August 1, 2023 T. Karl et al.: Fiber orientation tensor approximations based on an implicitly defined closure approach

Appendix: References


