

Inverse design of shape-morphing structures based on functionally graded composites

International Conference on Composite Materials 2023

Hirak Kansara

PhD Student in Mechanical Engineering Queen Mary University of London

With excellent contributions from: <u>Mingchao Liu</u> (Birmingham), <u>Yinfeng He</u> (Nottingham), <u>Wei Tan</u> (QMUL)

2D flat shape

Forward design

Inverse desigr

Outline

1. Motivation

2. Methods

3. Results

Morphing structures

NASA's Goddard Space Flight Center

Sofla, A.Y.N., et al. *Materials & Design*, 2010.

Advanced Robotics at Queen Mary

Morphing structures have the ability to change their shape as deployable structures, improve aerodynamic performance, or achieve specific manipulation/motion.

Some candidate morphing structures:

Shape-morphing structures that transform from **flat 2D sheets** to **3D shapes** are desired due to simplicity in fabrication and transportation (via stacking).

2D flat fabric

 $\kappa = 0$

Deformation

3D shape after draping

[Gupta et al. 2019]

 $\kappa = 0$

\Box Isometries cannot alter the Gaussian curvature (κ).

Methods to achieve morphing from flat sheet:

Inverse design problem:

> How to determine a 2D pattern that deforms into a desired 3D shape?

Outline

1. Motivation

2. Methods

3. Results

Start from the beam problem:

We can simplify the axisymmetric problem into 1D beam problem:

Top view

Side view

□ The load from the transverse and out-of-plane direction will introduce beam buckling.

Tapered beam equation

Tapered beam equation relates the shape of an elastic strip (LHS) under mechanical loading to the curvature of a 3D shape (RHS) using non-linear beam theory.

Tapered Elastica equation:

$$\frac{d}{d\xi} \left[\hat{E}(\xi) \cdot \hat{I}(\xi) \cdot \frac{d\theta}{d\xi} \right] = -\hat{H} \frac{d\hat{z}}{d\xi} - \hat{V} \frac{d\hat{x}}{d\xi}$$

$$\hat{I}(\xi) = \frac{\hat{w}(\xi) \cdot \hat{t}(\xi)^3}{12}$$

Control:

- Moment of inertia (width/thickness)
- Local Young's Modulus

□ Control the local bending stiffness to achieve a specific morphing shape.

Previous work: Uniform thickness and tessellation

Without tessellation

Applying horizontal force and assuming uniform thickness.

$$\hat{w}(\xi) = \tilde{H} \frac{(\hat{z}_* - \hat{z})}{\theta_{\xi}(\xi)}$$

With tessellation

Following tessellation condition.

$$\hat{w}(\xi) = \frac{2L}{w_0} \cdot \hat{x}(\xi) \cdot \tan\left(\frac{\pi}{N}\right)$$

$$\hat{t}(\xi)^3 = \tilde{H} \frac{(\hat{z}_* - \hat{z})}{w(\xi) \cdot \theta_{\xi}}$$

[Liu, M. et al. Soft Matter, 2020, 16, 7739-7750]

□ Structures with varying thickness are difficult to store and incompatible with brittle material.

Previous work: Distributed local porosity

Assuming uniform thickness and following the tessellation condition.

Level of local porosity, ϕ , enables bending stiffness to be varied.

$$\phi(\xi) = 1 - \tilde{H} \frac{(\hat{z}_* - \hat{z})}{\hat{w}(\xi) \cdot \theta_{\xi}}$$

□ However, size of porosity may adversely affect load bearing capacity of morphing structures.

Our work: Modulus-graded beam

Assuming non-uniform modulus distribution with uniform thickness and tessellation.

Modulus distribution is achieved by varying volume fraction of bi-phase composites. But...

How to determine the composition of each material?
AND
How to fabricate the graded composite?

Voxelated graded composites

One strategy involves discretising the geometry using voxels.

□ The modulus of each slice can be designed to achieve a certain modulus.

Additive Manufacturing of Graded Composites

□ The two compatible polymers have good interface bonding.

Additive Manufacturing of Graded Composites

□ Two compatible elastomers are used to manufacture graded composite (FLX9070 is soft and FLX9095 is rigid).

Increase in voxel size

0.25 mm 0.5 mm 1 mm **50% composition**

Design principle

Design strategy employed to inverse design desired 3D shape.

Outline

1. Motivation

2. Methodologies

3. Results

Validation (FEM vs Experiment)

Target: 3D tessellating hemisphere

□ A good agreement between FEM predictions, analytical solution and experiment.

Load-bearing capacity

It is essential to evaluate their load-bearing capacities, before engineering application.

Experiment

□ Indentation tests to determine the stiffness and the energy absorption capacity.

Load-bearing capacity

3D tessellating hemiellispsoids with varying aspect ratios.

 \Box Indentation tests to determine the stiffness (*K*) and the energy absorption capacity (ψ).

Aggregate patterns of materials

The same morphing structure using of various aggregate patterns in either width or thickness direction.
This is to avoid generating too many interfaces if the bonding is not very well.

Why use composites instead of a single material for morphing?

Composites can be designed to blend the distinct advantages of two different materials.

Sensing and energy storage

[ACS Appl. Mater. Interfaces 2022, 14, 29, 33871-33880]

Heat management

https://physicsworld.com/a/cool-graphene-composites-block-em-radiation/

Multifunction – Hemisphere (Heat transfer)

Composite material that exhibits intermediate

Before morphing

After morphing

thermal conductivity.

Multifunction – Hemisphere (Electric potential)

Before morphing

After morphing

Soft Polymer (High electrical conductivity)

Rigid Polymer (High thermal conductivity)

Multifunction – Hemisphere

□ The temperature and electrical potential profiles vary with different compositional patterns.

Composite blending

> Composite material that exhibits favourable properties for both electrical and thermal conductivities.

Potential multifunctional applications:

O2 arena

Nosecone

Heat shield

Conclusion:

- The modulus profile of tapered spokes needed to achieve a desired 3D deformation was inversely designed using the **Tapered Beam equation**.
- We have achieved the graded morphing composites based on rule of mixtures, discretised voxels and additive manufacturing.
- **Multifunctional morphing composites** blend the distinct advantages of two different materials and combined effective properties in a single structure.

Future work:

• Achieving **self-actuation** by embedding stimuli-responsive material within the print or as an addition to the printed structure.

Thank you for your attention!

References:

 Kansara, H., Liu, M.*, He, Y., Tan, W.* (2023). Inverse design and additive manufacturing of shapemorphing structures based on functionally graded composites. J Mech. Phys. Solids, Under Review.
Liu, M., Domino, L., Vella, D.* (2020). Tapered elasticæ as a route for axisymmetric morphing structures. Soft Matter, 16, 7739–7750.
Zhang, Y., Yang, J., Liu, M.*, Vella, D. (2022). Shape-morphing structures based on perforated kirigami. Extre. Mech. Lett., 56, 101857.

Research sponsors:

Open-source research code:

Engineering and Physical Sciences Research Council

Gaussian curvature [Gauss, 1827]

• The Gaussian curvature of a surface is invariant under local isometry.

Summary of the overall framework

Voxelated graded composites

Plotting the composite modulus against the volume fraction for longitudinal direction, E_{xx} .

Interestingly, \mathbf{E}_{xx} scales with the volume fraction due to affine deformation, whereby a global deformation is translated uniformly to microscale.

Results follow the Voigt (Upper) bound of rule of mixtures.

 $\mathbf{E}_{xx}(\xi) = f_r(\xi)E_r + f_s(\xi)E_s$

Bending deformation is primarily dependent on longitudinal modulus, E_{xx} , so we only need to match the modulus profile in that direction.

Voxelated graded composites

Plotting the composite modulus against the volume fraction for transverse, E_{yy} , and out-ofplane directions, E_{zz} .

Voxels under constant stress undergo non-affine deformation, resulting from a mismatch of strain.

Points are bounded by the Voigt (Upper) and Reuss (Lower) bounds of rule of mixtures.

$$E_{yy} = E_{zz} = \left[\frac{f_r(\xi)}{E_r} + \frac{f_s(\xi)}{E_s}\right]^{-1}$$

Models such as Hashin--Shtrikman could also be used to capture micro-mechanics of bi-phase materials but at heightened complexity.

Multifunctional – Rectangle shapes

	Soft Polymer (PI + 15% Graphite)	Rigid Polymer (PLA + 30% Carbon fibre)
Thermal conductivity (W/mK)	0.3155	2.01
Electrical conductivity (S/m)	1E-7	2.86E-23

Governing equations: <u>Transient heat transfer:</u>

$$\nabla^2 T + \frac{\dot{q}}{k} = \frac{\rho C_p}{k} \frac{\partial T}{\partial t}$$

Electrical conductivity:

P -	-V	 1	L
u =	\bar{I}	 $\bar{\sigma}$	A

Rectangle shape: heat transfer properties

> The temperature profiles vary with different compositional patterns.

Rectangle shape: electrical conduction properties

> The electrical potential profiles vary with different compositional patterns.

Some candidate morphing structures:

Shape-morphing structures that transform from flat 2D sheets to 3D are desired due to simplicity in fabrication and transportation (via stacking).

If you change Gaussian curvature:

2D flat fabric

K = 0

3D shape after draping

K > 0

□ Change the Gaussian curvature will cause severe wrinkling!

[Gupta et al. 2019]

Some candidate morphing structures:

Shape-morphing structures that transform from **flat 2D sheets** to **3D shapes** are desired due to simplicity in fabrication and transportation (via stacking).

Gaussian curvature [Gauss, 1827]

□ The Gaussian curvature of a surface is invariant under local isometry.

https://math.etsu.edu/