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Current research lacks in several aspects

{Advisory Circular)

€ This establishes the damage growth, strength, failure

location, and failure mode and mechanism of the
components. The damage tolerance discussion focuses on
propeller Dblades, but may be applied to any composite
propeller component.

€ Applicants should conduct material testing to determine

material properties, including the impact of defects,
manufacturing parameters, pollution, environmental
effects, operational damage during the blade's lifecycle, and
changes in material performance during service.

— Quoted from {AC No: 35.37-1B) and {CCAR 33.15)

» Static strength analysis is typically conducted only for specific laminate structures, with limited involvement in the study of

dynamic characteristics under cyclic loading.

» The dynamic characteristics and dynamic strain of weak-link are not taken into account, and there is limited involvement in
determining the optimal laminate design from the perspective of damage tolerance.
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Tapered composite laminate
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» Static damage assessment
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Regarding monotonic loading, interlaminar behavior o -
is described by a bi-linear traction-separation cohesive () (b)

formulation, which describes static damage initiation
status in this section.

(e
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(©)

Comparisons of static damage index contour of (a) 5° tapered laminate,
(b) 7.5° tapered laminate and (c) 10° tapered laminate
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Comparisons of a stress contour plot of direction under monotonic
loading of (a) 5° tapered laminate, (b) 7.5° tapered laminate and (c)
10° tapered laminate

A Schematic plot of traction-separation cohesive criteria
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» Static damage assessment
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Comparisons of damage index between (a) 5° tapered laminate, (b) 7.5° tapered laminate and (c) 10° tapered laminate

. The results show

» It can be seen that all of the maximum value of damage index in continuous cohesive element plies in three tapered laminate
are approximately equal, but the maximum value of damage index in dropped cohesive element plies is different. Therefore,
it indicates the maximum value of damage index in dropped cohesive element plies is more sensitive to taper angle change.

» It can also be seen that the range of stress distribution can increase with the decrease of the taper angle, which indicates the
interaction of adjacent layers can be stronger. And another factor is that the stress can be more concentrated as the taper
angle increase. These reasons ultimately lead to the highest damage index of 7.5° tapered laminate in dropped cohesive
element plies in three tapered laminates.
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» Dynamic damage assessment

The high-cycle fatigue weak-link can be located and
predicted, based on the constant life diagram of composite
laminate, when the following equation is satisfied

O, .
_ f
O, = (O-s,j _O-st,j)’ Oc,j S Os,j < O,
Ocj ~Ost,j
o, .
_ ]
O, = (O-s,j +O-sc,j)’ “Oc, SO-s,j SO-c,j
O,j +O-SLJ'

The weak-link zone corresponds to the position, where the
vibration stress margin is zero, when the following
equation is satisfied
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» Dynamic damage assessment
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» Dynamic damage assessment
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Comparisons of damage index of different static stress of (a) 1kN and (b) 5kN

. The results show

» All of the maximum value of the scaling factor is the direction S13 of with different steady stress in three taper
angles laminates. The scaling factor value increases as the taper angles increase in the direction of with different
steady stress, which indicates interlaminar shear stress along the longitudinal orientations reaches its fatigue failure
first, and also explains the reason why interlaminar failure is easier to break.
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FATIGUE BEHAVIOUR

> Interlaminar behavior

The delamination behavior was investigated based on the
constitutive equation with a cyclic cohesive interface
model approach in this study, which allows a more
detailed investigation of the failure criteria used to model
the delamination failure described by a cyclic traction-
separation cohesive formulation.

51 5Fdv - LmT. SAUdS = js T, - oudS

The evolution equation for damage with a cyclic cohesive

interface  model approach based on the above
requirements, which is written as
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» Prediction of fatigue crack growth
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. The results show

» The effect of time increment with different sampling frequencies on fatigue crack growth was investigated
to reveal the internal mechanism better. As shown in Fig. (b), the time increment defined as one cycle of
the dynamic load is a distinct dividing line for others. The less time increment is, the more damage
accumulation is, which indicates fatigue crack growth rates is faster.
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. The results show

» The less time increment is, the more damage accumulation is, which indicates fatigue crack growth rates is faster. Furthermore, the
more coefficient of damage is, the more damage accumulation is, which indicates fatigue crack growth rates also is faster.

» Some features: (1) the crack growth rate only slightly increases as the taper angles increase, which indicates the range of the taper

angles is not quite sensitive to the crack growth rate; (2) in the early stage of crack growth, the percentage of the crack area from
large to small is 7.5°, 10°, 5°. One of the reasons is that the range of stress distribution can increase with the decrease of the taper
angle, and the interaction of adjacent layers can be stronger, which results in the initial value of the cumulative damage being

larger, and it fatigues failure first.
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CONCLUSION

o

This study focuses on the interlaminar fatigue behavior
of different taper angles laminates with a "bamboo
shoots shell" shape under cyclic loading with varying
stress ratios. The study proposes a novel tapered
composite material layer design criterion, which shows
that the laminate structure meets the composite laminate
design criterion, has rational dropped plies and transition
and is more manufacturable.

A dynamic damage assessment method based on the
classical constant life diagram model is proposed to
predict the high-cycle fatigue weak-link zone.

o

A smaller taper angle leads to a wider range of stress
distribution and stronger interaction between adjacent
layers, while a larger taper angle results in more
concentrated stress. The reason why tapered laminates
with a smaller taper angle are more prone to fatigue
failure is the stronger interaction between adjacent
layers and the larger range of stress distribution. This
leads to a higher initial value of cumulative damage and
ultimately results in earlier fatigue failure.

The key to the issue is how to balance the damage
caused by the tapered angle is very important based on
the weak-link location.
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