

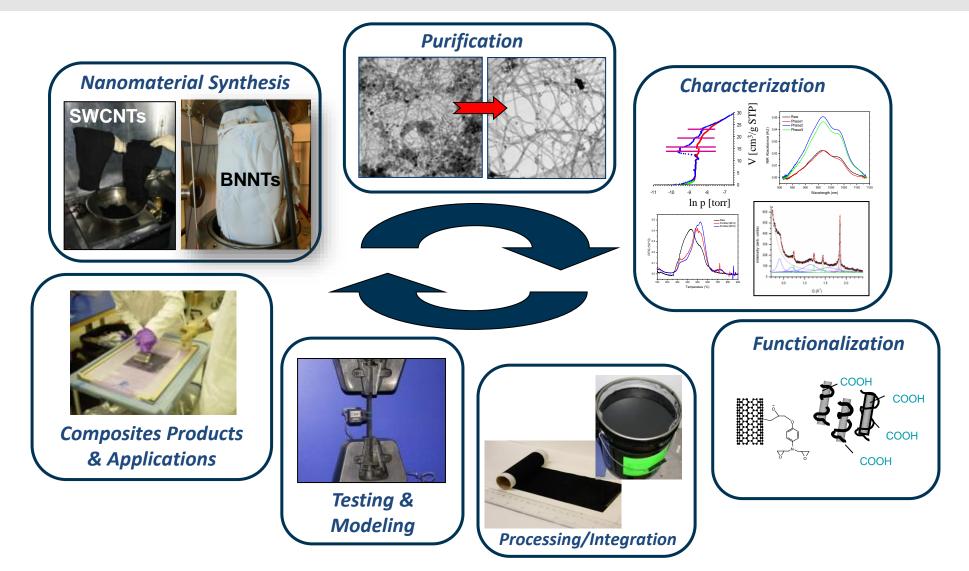
Flame-Resistant Multifunctional Nanocomposite Fabric for Fire Protection of UHMWPE Laminates

M.B. Jakubinek^{*1}, Y. Martinez-Rubi¹, D. Maillard², V. Pankov³, B. Ashrafi³, B. Simard¹, C.T. Kingston¹

¹Nanocomposites Group, Division of Emerging Technologies,
 ²Automotive & Surface Transportation Research Centre,
 ³Aerospace Research Centre,
 National Research Council Canada

*Michael.Jakubinek@nrc.ca | linkedin.com/in/michaeljakubinek

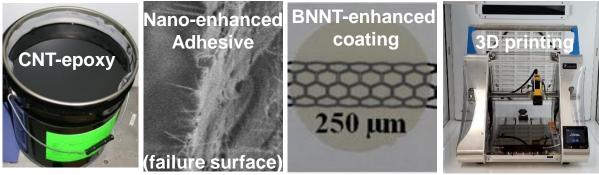

ICCM 23 – Twenty-Third International Conference on Composite Materials


NRC.CANADA.CA

Outline

- □ Introduction Nanocomposites@NRC
- □ Carbon nanotube(CNT)-based fabrics
 - □ Nonwoven CNT–TPU
 - **Tailorable composition, tailorable properties**
- □ Fire protection application
 - □ Flammability of UHMWPE armor laminates
 - □ Nanocomposite & laminate manufacturing
 - □ Flammability testing & results
- □ Other application directions & scalability
- **Concluding remarks**

Nanocomposites@NRC: Integrated Approach



Nanotube Composites

...translating the exceptional properties of individual nanotubes to macroscopic, engineering materials with useful structural and functional performance...

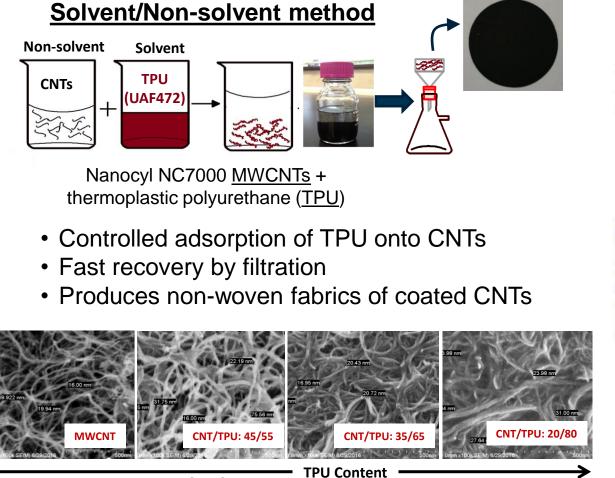
Dispersion Methods

(direct mixing, solvent & melt processing)

Additive/filler: low nanotube content (1-10 wt%)

Applications: Hybrid fiber reinforced plastics (FRP) composites, coatings, adhesives, additive manufacturing

Preformed Assemblies


Nanotube preform: high nanotube content

Applications: Laminated composites, surface and interlaminar modification

CNT-TPU Nanocomposite Fabrics

- Novel approach
- Cost-effective, industrial-grade CNT powders
- Tailor composition
 & properties
- Lightweight
- Convenient handling (use in fabric form)
- Scalable

Martinez-Rubi et al, ACS AMI 2017 | Jakubinek et al, MRS Adv 2019

CNT Content

8000 -Adsorption of 7000 -**TPU on CNTs** 6000 (b) 5000 - (b) 600 - (b) 6 ပ^{်စ္စ} 3000 -2000 CNPU65 1000 100 200 600 300 400 500 1600 30 (BPa) 1400 1200 Young's Modul 1000 20 Strength (800 600 -400 200 10 20 30 40 50 60 MWCNT wt% 600 40 35 (MJ/m³) § 500 · 30 at break 400 300 200 Strain a ough 10 100

10

20

30

MWCNT wt%

50

60

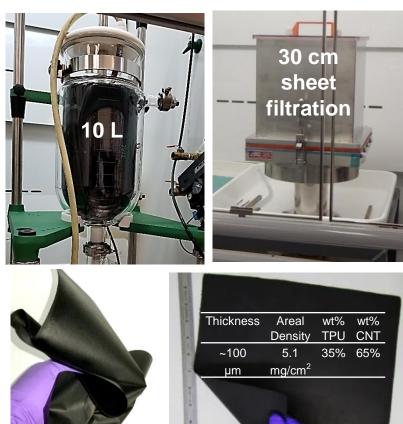
40

Application Case: UHMWPE-based Armor

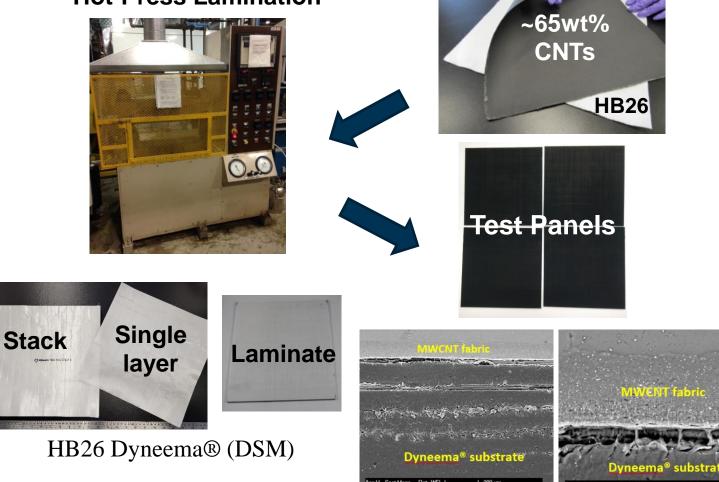
- High-performance <u>UHMPWE materials</u> (e.g., Dyneema® & SpectraShield®) used in armor and other protective equipment
 - Outperform Kevlar® on a per mass basis, but
 - Have low melting temperature and <u>low fire resistance</u> requiring additional flame protection
- Established solution (application of a layer of fire-resistant material such as Nomex) adds significant weight
- Carbon nanotubes have been shown to impart flame/fire resistance in studies of polymer and FRP composites [e.g., refs]
- <u>Our nanocomposite fabric approach</u> offers: (1) high-content of CNTs to maximize their effect, (2) ability of TPU component to provide for adhesion, (3) compatibility with manufacturing protocol for UHMWPE armor laminates

Goal: New, lighter fire protection solution

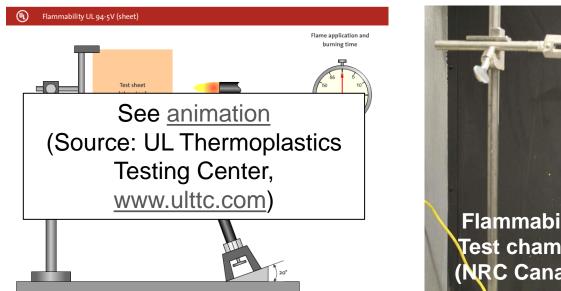
Dyneema® Panel (no flame protection)

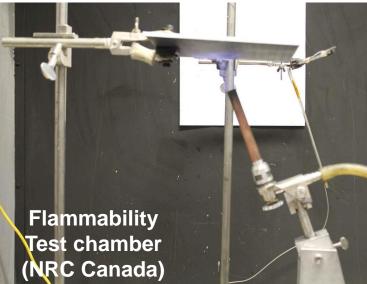

Refs:

A. Kausar et al. Polym.-Plast. Technol. Eng. 56, 470 (2017).
X. Fu et al. Nanotech. 21, 235701 (2010).
Q. Wu et al. Carbon 46, 1164 (2008).
Q. Wu et al. Carbon 48, 1799 (2010).



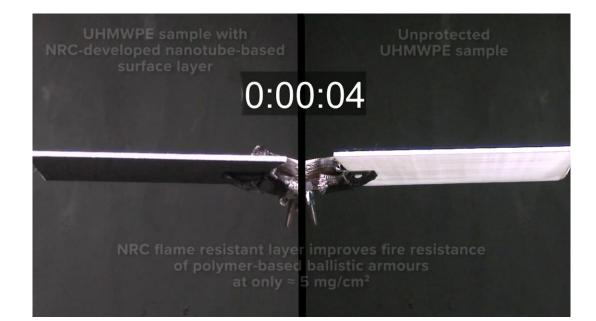
Nanocomposite & Panel Manufacturing


CNT-TPU Sheet Fabrication

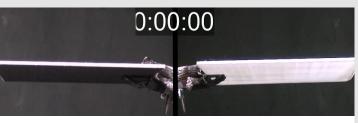


Hot-Press Lamination

Flammability Testing


UL94-5V

- Calibrated flame, 500 W
- 5s ON, 5s OFF
- Repeat 5x


Rating	Description
5V	No flaming or glowing after 60s, no dripping of flaming particles, no burn through by the flame, and
	no surface damages
5VA	No flaming or glowing after 60s, no dripping of flaming particles, no burn through by the flame, but
	can exhibit some surface damages
5VB	Samples exhibit no flaming or glowing after 60s, no dripping of flaming particles, but can be run
	through by the flame.

Flammability Testing

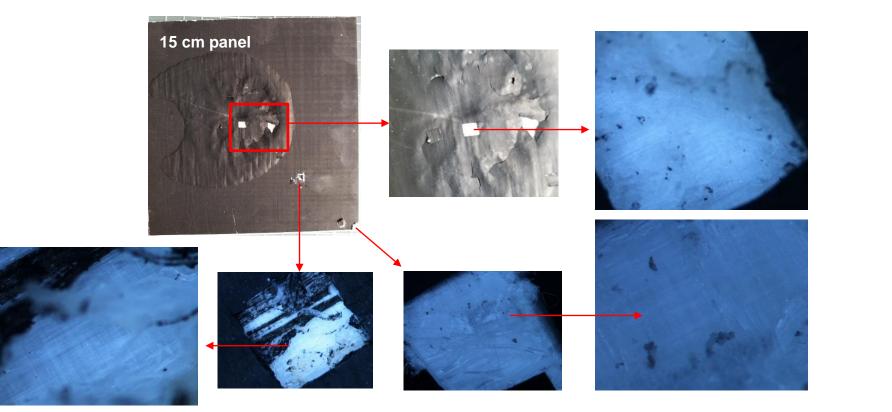
Continuous exposure to flame

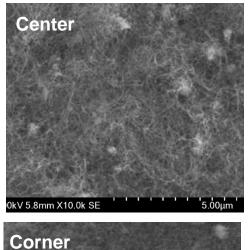
HB26 UHMWPE laminate

- Softening/meting/deflection
- Ignition
- Dripping of flaming particles
- Extensive damage

+Nanocomposite

- No ignition/burning
- Modest deflection
- Surface damage only

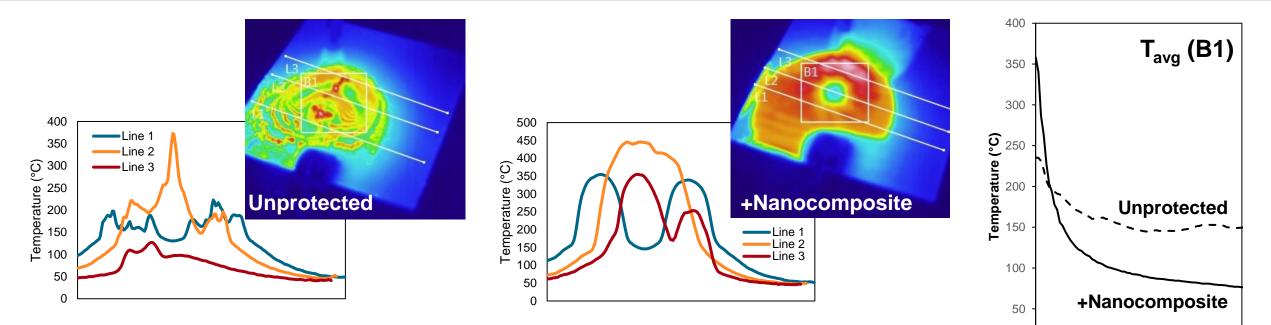



Flammability Testing – UL94-5V – Results

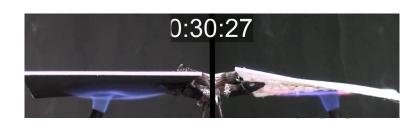
Before	After	Notes
HB26 Reference 1	Reference	 Melting of the UHMWPE Dripping of flaming particles During the last exposure, the polymer starts to burn If not extinguished externally, the complete sample will burn
CNT-TPU 5 mg/cm ²	Back face (after test)	 The sample is not ignited The polymer is contained PASSIA No dripping No back face damage

- Protected panels pass UL94-5VA flammability test
- Added mass only ~ 5 mg/cm²
- Much lighter than established solution

Post-test inspection



Corner 0kV 5.7mm X10.0k SE


- **Debonding** of the protective coating around location of flame exposure
- UHMWPE not burnt and **fibers largely intact** in hot zone below the debonded layer
- Potential to optimize both adhesion & delamination

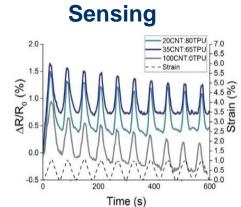
Thermal Imaging

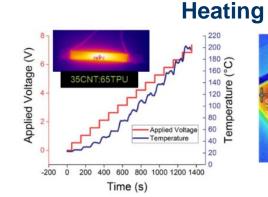
+Nanocomposite layer

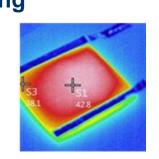
- · Spreads heat (more uniform surface temperature, faster cooling)
- Higher surface temperature attributed to detachment/debonding
- Reduced temperature within and on the surface of UHMWPE laminate → minimal deflection of panel, limited/reduced melting of UHMWPE fibers

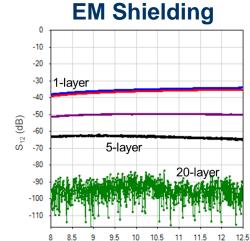
20

Time (s)

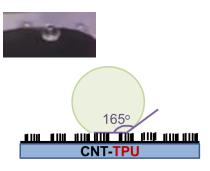

40


60

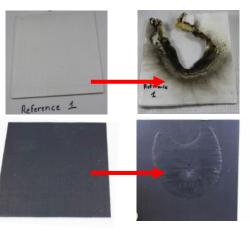

0


0

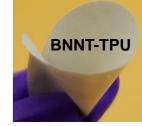
Other Application Cases






Superhydrophobicity

Energy Absorption


Flame Resistance

Morphing Structures

+ complimentary possibilities based on BNNTs, other nanomaterials

US Patent App. 17393457, 2022; US Patent App. US20200101202A1; PCT/P60550PC00,2022; Jakubinek et al., MRS Advances, 2019; AIAA Scitech6.2019-1857 (2019); Yamani et al., J. Mater. Res., 2022

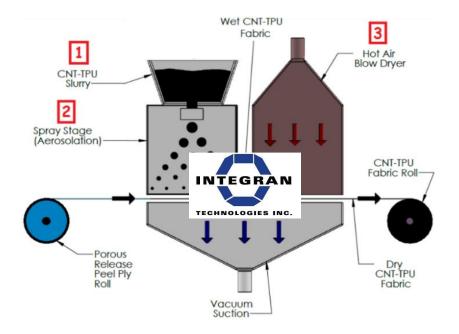
Nanocomposite Fabric: Scale-up (Roll-to-Roll)

https://www.ic.gc.ca/eic/site/101.nsf/eng/home

Nanocomposite Fabrics Production System

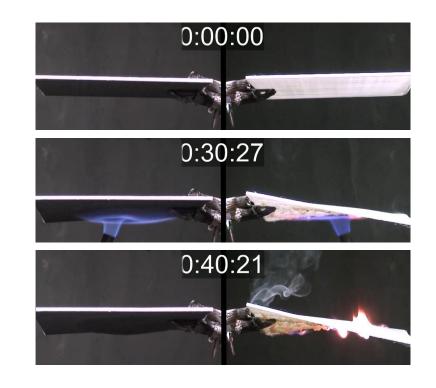
From: Innovation, Science and Economic Development Canada

The National Research Council is seeking a manufacturing process solution that will produce nanocomposite sheets/fabrics comprised of carbon nanotubes and polymer by the roll in order to make the next generation of high-performance multifunctional fabric for fire protection, energy absorption, electromagnetic shielding, etc.


Challenge sponsor: National Research Council of Canada (NRC)

Funding mechanism: Contract

Opening date: January 27, 2020 Closing date: May 25, 2020, 14:00 Eastern Daylight Time


The National Research Council is seeking a manufacturing process solution that will produce nanocomposite sheets/fabrics comprised of carbon nanotubes and polymer by the roll in order to make the next generation of high-performance multifunctional fabric for fire protection, energy absorption, electromagnetic shielding, etc. Phase 1: Proof of feasibility (6 mo./\$150k) Completed 2021

Phase 2: Prototype development (2y./\$1M) Contracted March 2022

Summary

- Nanotube-based fabrics are advantageous for composites fabrication & application: <u>high nanotube content</u> to better leverage properties, <u>simplified handling</u> for increased safety and ease-of-integration
- Nonwoven CNT-TPU fabric was <u>applied directly to surface of</u> <u>Dyneema® laminates</u> to provide fire protection
 - Panel passes UL94-5VA flammability test (unprotected panel fails, and burns dramatically under equivalent conditions)
 - The nanocomposite protective layer adds only 5 mg/cm² <u>much</u> <u>lighter than current solutions</u> – and is compatible with armor laminate manufacturing
- Effectiveness in laboratory tests for flammability, and other application demonstration cases, is motivating current scale-up efforts (NRC + Integran Technologies Inc. + Innovative Solutions Canada) for the nanocomposite fabric material

Acknowledgments

NRC-Nanocomposites Group Aqueel Alrebh Michael Barnes Jingwen Guan Liliana Gaburici Christa Homenick **Michael Jakubinek** Keun Su Kim **Chris Kingston (Group Lead)** Hao Li **Yadienka Martinez-Rubi** Marc McArthur Mark Plunkett Dean Ruth

Benoit Simard

<u>NRC-Aerospace</u> Behnam Ashrafi Chun Li Vladimir Pankov <u>NRC-Automotive</u> Simon Baril-Gosselin **Damien Maillard** Eric Patenaude

Industry discussions NRC-Security Materials Technology Roadmap NP Aerospace (Morgan Advanced Materials)

Integran Herath Katugaha Jon McCrea Robert Pallotta Gino Palumbo

Innovative Solutions Canada (Contract 31103-212430/001/SI)

Contact: **Michael Jakubinek** Senior Research Officer, Nanocomposites National Research Council, Ottawa ON, Canada <u>Michael.Jakubinek@nrc.ca</u> <u>linkedin.com/in/michaeljakubinek</u>

