Inversing spatial modulus distribution of CFRTP by a vibrational method and its hydrothermal aging application

1305

Weizhao Huang, Ye Zhang, Yi Wan, Jun Takahashi

Dept. Systems Innovation

The University of Tokyo

2023/08/03

Introduction

Accuracy comparison based on plate structure

- Verification to universal materials
- Application on hydrothermal aging monitoring
- Summary and future tasks

Introduction

Sustainable Development Goals

Carbon Fiber Reinforced ThermoPlastic

Turbine blade

Aviation

Automotive back door

Offshore wind turbine

[1] https://www.plasticstoday.com/automotive-and-mobility/smc-adopted-rear-door-frame-toyotas-new-prius-phv

[2] https://finance.sina.com.cn/chanjing/cyxw/2020-06-19/doc-iirczymk7818106.shtml

Introduction

- Modulus distribution become uncertain after molding process for complex-shape SMC structures.
- Modulus measured based on SMC plate cannot be used for CAE of complex-shape SMC ۲ structures directly.

- Hydrothermal aging from small salt powder, sunlight irradiation, humidity and spray of sea water. ۲
- The mat material from recovered carbon fiber can be used as core of the sandwich materials to ۲ ensure the economic benefits. [1] Yuto Nakashima. Master Thesis. The university of Tokyo. 2018. [2] https://byteclicks.com/41010.html

[3] P. Xue. JSCM 47. September, 2022.

- Obtain detailed special distribution of modulus of CFRTP composites;
- Monitoring the aging process of components by non-destructive vibrational method.

Modulus spatial distribution

🛑 🛛 Vil

Vibration natural frequencies

Simulation object:^[1]

 f_i^s : Simulated frequencies

 f_i^e : Experimental frequencies

Genetic algorithm:

 $\left|F^{k}-F^{k-10}\right| \leq 0.001$

Advantages in identifying modulus:

- Non-destructive.
- Fewer requirements on geometric shapes.
- Obtain parameters based on one specimen.

CFRTP

[1] Ye Zhang. Doctoral Thesis. The University of Tokyo. 2021.

Numerical simulation

		А	В	С	D
Ev	1	59	46	53	40
EX	2	53	52	47	34
E.c.	1	27	28	28	31
Ey	2	31	24	32	35
Cont	1	12	13.5	14	15.5
Gxy	2	12.5	13	14.5	15

Randomly initial modulus distribution

Thickness distribution

Order	So	SA	SD	Sc
1	166	154	151	127
2	210	198	194	199
3	493	402	401	366
4	806	481	488	456
5	845	684	687	613
6	928	810	806	787

0

Numerical simulation

 S_{O}

S_A

 S_{D}

 S_{C}

Wo	orst	A	В	С	D
Ev	1	26.1	38.7	59.7	51.8
LX	2	52	48.9	54.3	46.5
Ev	1	33.7	25.8	24.9	45.6
сy	2	22.8	35	24.9	27.5
Cont	1	14	11.8	15.9	16.2
Gxy	2	12.2	12.7	13.9	12.6
Mc	aret	٨	D	C	D
VVC	1 1	27.0	EE 2	E0.0	20.6
Ex	1	37.9	00.Z	50.8	30.0
	1	49.9	40.2	52.3	41
Ey	1	41.1	33.8	50.6	22
	2	21.8	38.5	26.7	38.3
Gxy	1	16.3	12.9	14.9	13.5
1	2	13.6	8.9	17.3	11
Worst					
vvc	orst _	A	В	С	D
	orst 1	A 57.8	B 39.6	<u>C</u> 49.3	D 43.5
Ex	1 2	A 57.8 36	B 39.6 53.4	C 49.3 53.3	D 43.5 44.7
Ex	1 2 1	A 57.8 36 28.5	B 39.6 53.4 38.9	C 49.3 53.3 36.5	D 43.5 44.7 36.6
Ex	1 2 1 2	A 57.8 36 28.5 21.8	B 39.6 53.4 38.9 23.6	C 49.3 53.3 36.5 38.7	D 43.5 44.7 36.6 25.6
Ex Ey	1 2 1 2 1 2	A 57.8 36 28.5 21.8 14.9	B 39.6 53.4 38.9 23.6 7.6	C 49.3 53.3 36.5 38.7 17	D 43.5 44.7 36.6 25.6 13.3
Ex Ey Gxy	1 2 1 2 1 2 2	A 57.8 36 28.5 21.8 14.9 15.8	B 39.6 53.4 38.9 23.6 7.6 15.2	C 49.3 53.3 36.5 38.7 17 13.7	D 43.5 44.7 36.6 25.6 13.3 15.3
Ex Ey Gxy	1 2 1 2 1 2	A 57.8 36 28.5 21.8 14.9 15.8	B 39.6 53.4 38.9 23.6 7.6 15.2	C 49.3 53.3 36.5 38.7 17 13.7	D 43.5 44.7 36.6 25.6 13.3 15.3
Ex Ey Gxy Wo	1 2 1 2 1 2 0rst	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1	C 49.3 53.3 36.5 38.7 17 13.7 C	D 43.5 44.7 36.6 25.6 13.3 15.3 D 27.9
Ex Ey Gxy Wo Ex	1 2 1 2 1 2 0rst 1 2	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6 28 1	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1	C 49.3 53.3 36.5 38.7 17 13.7 C 49	D 43.5 44.7 36.6 25.6 13.3 15.3 D 37.9 52.2
Ex Ey Gxy Wa Ex	1 2 1 2 1 2 0rst 1 2	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6 28.1	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1 56.2	C 49.3 53.3 36.5 38.7 17 13.7 C 49 54	D 43.5 44.7 36.6 25.6 13.3 15.3 D 37.9 53.3
Ex Ey Gxy Wo Ex Ey	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6 28.1 40	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1 56.2 39.8	C 49.3 53.3 36.5 38.7 17 13.7 C 49 54 45.7	D 43.5 44.7 36.6 25.6 13.3 15.3 D 37.9 53.3 51.6 20.7
Ex Ey Gxy Wo Ex Ey	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6 28.1 40 24.2	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1 56.2 39.8 44.6	C 49.3 53.3 36.5 38.7 17 13.7 C 49 54 45.7 31.8	D 43.5 44.7 36.6 25.6 13.3 15.3 D 37.9 53.3 51.6 28.7
Ex Ey Gxy Wo Ex Ey Gxy	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	A 57.8 36 28.5 21.8 14.9 15.8 A 24.6 28.1 40 24.2 15.1	B 39.6 53.4 38.9 23.6 7.6 15.2 B 55.1 56.2 39.8 44.6 9.8	C 49.3 53.3 36.5 38.7 17 13.7 13.7 C 49 54 45.7 31.8 11.9	D 43.5 44.7 36.6 25.6 13.3 15.3 D 37.9 53.3 51.6 28.7 11

Target:

		Α	В	С	D
F	1	59	46	53	40
EX	2	53	52	47	34
Ev	1	27	28	28	31
сy	2	31	24	32	35
Cont	1	12	13.5	14	15.5
Gxy	2	12.5	13	14.5	15

Problems: Poor accuracy and disorder

Correct order Upside down

Left and right

Strategy: Integrating and re-search

Numerical simulation

Wo	orst	А	В	С	D
Ev	1	49.5	47.4	46.6	43.4
EX	2	45.6	55.6	49.1	35.8
Ev	1	27.9	29	35.3	26.9
⊏y	2	28.1	26.4	29.3	37.7
Cont	1	11.4	14.6	11.6	16.8
Gxy	2	12.5	12.5	15.7	14.4

		А	В	С	D
Ev	1	14.75%	0.65%	11.13%	0.50%
EX	2	16.42%	2.88%	12.98%	13.82%
Ev	1	4.81%	8.93%	8.93%	7.10%
сy	2	7.42%	27.08%	7.50%	7.14%
Cont	1	14.17%	4.00%	10.71%	9.03%
Gxy	2	0.00%	0.77%	10.34%	6.00%

Wo	orst	А	В	С	D
Бv	1	50.3	45.7	47.1	40.2
EX	2	44.3	53.5	53.1	38.7
E.c.	1	28.3	25.5	30.5	33.2
Ey	2	28.7	30.5	29.6	32.5
Cont	1	13.7	13	12.5	14.1
Gxy	2	12.5	12.9	16	14.1

		Α	В	С	D
Би	1	16.10%	3.04%	12.08%	8.50%
EX	2	13.96%	6.92%	4.47%	5.29%
E.c.	1	3.33%	3.57%	26.07%	13.23%
Ey	2	9.35%	10.00%	8.44%	7.71%
Gxy	1	5.00%	16.80%	17.14%	8.39%
	2	0.00%	3.85%	8.28%	4.00%

Integrating 3 components

 $S_0 + S_A + S_D$

Re-search treatment

> Experiments

SMC pieces size: 125*250 mm

	Part	А	В	С	D
Ev	1	34.13	34.54	33.86	33.79
EX	2				
E.	1				
су	2	35.26	36.55	37.53	34.33
Charl	1				
Gxy	2				

Tested modulus

	Part	А	В	С	D
Бу	1	60	22	46	60
EX	Error	75.80%	36.30%	35.26%	77.58%
Ey	2	51	41	54	52
	Error	44.36%	12.18%	44.94%	50.90%

Errors of direct inversing

- Resin: PA6
- V_f: 50%
- Tape size: 5 x 19 x 0.044 mm

[1] Ye Zhang. Doctoral Thesis. The university of Tokyo. 2021.

Verification to universal materials

[1] Yunqian Zhang. Doctoral Thesis. The University of Tokyo. 2022.

speed

- The strength generally decrease with the aging time, and the reduction ratio of the first month is the highest.
- Abnormal values exist, resulting from the scatter of the composites.

4 month S2.2 Specimen 1

4 month S2.2 Specimen 3

- With aging time and springback ratio increasing, more delaminationcaused fracture occurs.
- The influence of sea water is severer on both delamination and mechanical properties..
- The modulus reduction ratio shows the similar trend with the strength.
- The modulus reduction of R1.8 and R2.2 is difficult to be distinguished.

The variation in higher orders was more apparent, which is consistent with FEM.
Sea water aging environment cause higher reduction in natural frequencies.

Summary and future tasks

> Summary

- The vibrational method can inverse the spatial modulus distribution with a limited error;
- The natural frequencies reflects the reduction of mechanical properties after long-time aging;
- This non-destructive vibrational method could be applied for the aging monitoring of CFRTP materials.

Future tasks

• Apply the method to the serving environment of automotive and offshore wind turbines, including fatigue, artificial defects and thermo-oxidative aging.

Acknowledgement

 The authors would like to thank the Industrial Technology Center of Fukui Prefecture for providing the materials used in this study.

• The authors also would like to thank the WINGS-CFS of the University of Tokyo for the supporting.

Presentations from Takahashi-Wan lab

Name	Date	Venue	Room	Title
Zhiyu WANG	Mon	Process modelling - S1	Studio	A state-based peridynamic model for progressive damage analysis of CFRTP-SMC base
Peng XUE	Mon	Structural analysis and optimization - S2	3B	Optimization of floating vertical axis wind turbine structures using recycled carbon fiber reinforced thermoplastic
Xiaohang TONG	Tue	Mechanics of composites - S2	3A	The influence of tape geometry on the mechanical performance of bolted CFRTP-SMC joints
Zihao ZHAO	Tue	Liquid composites moulding - S2	2A	Simulation of fiber orientation during compression molding process of CFRTP-SMC
Ruochen XU	Wed	Multiscale modelling - S5	Studio	Morphology analysis and shape optimal of CFRTP-SMC based on Monte-Carlo simulation
Qian GAO	Wed	Recycling and sustainability - S3	1B	Prediction of strength and its variation of carbon fiber mat reinforced thermoplastics using Monte-Carlo method
Weizhao HUANG	Thu	Structural health monitoring - S1	Arc	Inversing spatial modulus distribution of cfrtp by a vibrational method and its hydrothermal aging application

THANK YOU

for your attention

