Progressive Damage Analysis of 3D Woven Composites Based on Decoupled Multi-scale Method

<u>Chihaya Hoshikawa</u>, Takanori Sugiura, Akinori Yoshimura, Keita Goto, Masahiro Arai

Department of Aerospace Engineering, Nagoya University (Japan)

Introduction

□ 3D woven CFRP

- Three-dimensionally oriented fiber bundles
- Higher impact resistance than UD-CFRP laminates
 ⇒ Applied in aerospace industry

<u>Challenges</u>

- Prediction of damage behavior with consideration of complex structure
- Reduction of the number of component tests

3D woven CFRP model

Efficient numerical method for simulating damage propagation behavior of 3D woven CFRP components is demanded.

Introduction

Strength prediction using conventional homogenization method

- Assuming that microscopic structure is set up periodically
- Adopted only for uniform deformation in macroscopic scale

Multi-scale analysis

Micro-macro coupled method : Conventional

- Both of two scale analyses must be carried out **alternately**.
- Microscopic analysis is carried out at every integration points of macroscopic model.

High calculation cost ⇒ Unrealistic for progressive damage simulation

Decoupled multi-scale method

- Identifying macroscopic constitutive law by microscopic analysis
 ⇒ Non-simultaneous analyses
- Lower calculation costs than previous method

Effective method for damage simulation of woven composites.

Decoupled multi-scale analysis

Validating the proposed method

Bamboo weave

D Textile composites used in this study

Cross section of Bamboo woven CFRP (90deg layer)

- Fiber is oriented in one direction.
- Nylon binders are woven orthogonally.

Schematic

Specimen

Microscopic damage modeling

Considering <u>transverse crack</u> and <u>interface debonding</u> as typical damages of woven structure

① Transverse crack

Modeled by continuum damage mechanics (CDM) model

Constitutive law

$$\boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\varepsilon}, \ \boldsymbol{C} = \boldsymbol{f}(d_2)$$

Damage evolution law

$$d_{2} = g(y_{d_{2}}) \Rightarrow \text{Identified by experiment}$$
$$e = \frac{1}{2}\sigma:\varepsilon$$
$$y_{d_{2}} = -\frac{\partial e}{\partial d_{2}} \Rightarrow \text{calculated by strain}$$

2 Interface debonding

Modeled by cohesive zone model (CZM)

Expressing stiffness degradation by Transverse damage variable d_2

- C : Stiffness tensor
- d_2 : Transverse damage variable Undamaged $\rightarrow 0$ Completely damaged $\rightarrow 1$
- *e* : Helmholtz free energy per unit area

 y_{d_2} : Damage conjugate variable

Microscopic analysis model

Carried out by Abaqus/Standard 2018

Bamboo weave CFRP laminate $[0_3/90_3]_S$ is modeled. (Nylon binders are not considered)

Conditions

 y_1 , y_2 tensile, y_1y_2 shear y_1 , y_2 bending, y_1y_2 torsion

- Periodical boundary conditions are given, using Key-DOF method.
- Macroscopic unit strain and curvature are forced.

	Parameters of fiber bundle	
	$E_L = 152.9$ GPa	$E_T = 9.7$ GPa
	$v_{LT} = 0.373$	$v_{TT} = 0.450$
	$G_{LT} = 4.5$ GPa	
_	Parameters of resin	
_	E = 3.1GPa	v = 0.438

Structure Mechanics Lab. Aerospace Eng. Nagoya Univ.

Microscopic analysis

9

0.01

 $E_{11}^{\text{macro}}[-]$

Relationship between N_{22} and E_{11}^{macro}

0.02

Structure Mechanics Lab. Aerospace Eng. Nagoya Univ.

- warp fiber bundles are under stress σ_{11} .
- N_{22} increases non-linearly due to transverse damage of weft fiber bundle.

Microscopic analysis

10

0.01

 $K_{22}^{\text{macro}}[\text{mm}^{-1}]$

Relationship between M_{22} and K_{22}^{macro}

0.02

Structure Mechanics Lab. Aerospace Eng. Nagoya Univ.

- and weft fiber bundle is under stress σ_{22} .
- *M*₁₁ increases non-linearly due to transverse damage of warp fiber bundles.

Decoupled multi-scale analysis

• Validating the proposed method

Macroscopic constitutive law

Constitutive law

Relationship between stress resultant and unit strain

$$N = AE^{\text{macro}}, A = f(D)$$

- Damage is modeled by CDM model.
 - Warp fiber bundle direction at microscopic model \Rightarrow D_1
 - Weft fiber bundle direction at microscopic model \Rightarrow D_2

Damage evolution law

 $D = f(Y_D) \Rightarrow \frac{\text{Identified by}}{\text{microscopic analysis}}$ $e = \frac{1}{2}N: E^{\text{macro}} + \frac{1}{2}M: K^{\text{macro}}$ $Y_D = -\frac{\partial e}{\partial D} \Rightarrow \frac{\text{Calculated by}}{\text{strain and curvature}}$

U-shaped specimen

- *A* : In-plane stiffness matrix
- $m{D}$: Macroscopic damage variables Undamaged $\rightarrow 0$ Completely damaged $\rightarrow 1$
- *e* : Helmholtz free energy per unit area
- Y_D : Damage conjugate variables

Identifying constitutive law

U-shaped flexural analysis

 x_1 direction \Leftrightarrow Warp direction of microscopic model

Four-point bending analysis is carried out to investigate the initial damage occurrence location and damage process.

20mm

100

200

50

 $\star \chi_1$

Four-point bending test

50

Investigating initial damage location

$\square \text{ Results (Warp direction damage variable } D_1 \text{ distribution})$ $D_1 \begin{bmatrix} - \\ 0.65 \\ x_3 \\ x_1 \\ x_2 \end{bmatrix} \xrightarrow{\text{Curve section rear to support point point point point point point point 20mm}} \\ 13mm 20mm 20mm$

- Damage occurs <u>near to support and</u> <u>near to load point</u> in analysis.
- Damage are observed <u>near to support</u> and near to load point in experiment.

Damage observation (Left : outside, Right : inside)

 $\bullet \chi_2$

 χ_1

Investigating initial damage location

\square Results (Weft direction damage variable D_2 distribution)

- Damage occurs <u>near to support and</u> <u>near to load point</u> in analysis.
- Damage are observed <u>near to support</u> and near to load point in experiment.

Proposed method can predict the initial damage location of U-shaped specimen.

Conclusion

<u>Decoupled multi-scale damage analysis method</u> <u>for textile composite has been proposed.</u>

- Transverse crack and interface debonding were modeled as typical damages of woven structure and macroscopic constitutive law was identified by microscopic analysis.
- U-shaped beam structure was chosen as macroscopic structure, and damage propagation was modeled by CDM model.
- Four-point bending analysis was carried out to investigate initial damage occurrence location and flexural test was also carried out for validating the proposed method.
 - The proposed method effectively simulated the initial damage occurrence location of macroscopic complex structure.

