

Lessons learned when assessing emerging composite materials using life cycle assessment

Frida Hermansson^{1*}, Matty Janssen¹, Magdalena Svanström¹.

¹ Department of Technology Management of Economics, Division of Environmental Systems Analysis, Chalmers University of Technology, 41296 Gothenburg, Sweden.

*Corresponding author: frida.hermansson@chalmers.se

Lessons learned when assessing emerging composite materials using life cycle assessment

- Carbon fibre composites (CFRPs) are lightweight and can reduce the energy consumption in the use-phase of vehicles
 - Energy intensive to produce
- Can we decrease the environmental impact of CFRP?
 - The LIBRE project (2016-2021) aimed to produce carbon fibres from lignin
 - We will present the work progress for assessing the environmental impact throughout the project

- Early project assessment
- The climate impact of lignin-based carbon fibres
- The climate impact of recycling of CFRP and recovery of fibres
- The future climate impact of CFRP

Early project assessment

4

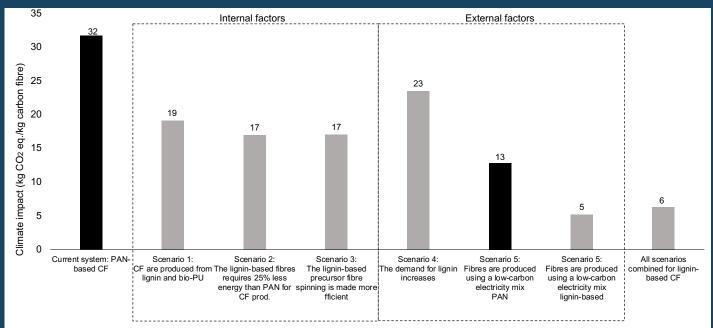
- The climate impact of lignin-based carbon fibres
- The climate impact of recycling of CFRP and recovery of fibres
- The future climate impact of CFRP

Early project-phase assessment

•Meta-analysis of old LCA studies

- The use of CFRP instead of conventional materials does not automatically reduce the environmental impact
- The carbon fibre production is the main contributor to the environmental impact of CFRP
 - The environmental impact can be decreased by:
 - Using a bio-based raw material such as lignin
 - Recycling and recovery of the fibres

- Early project assessment
- The environmental impact of lignin-based carbon fibres
- The environmental impact of recycling of CFRP and recovery of fibres
- The future environmental impact of CFRP



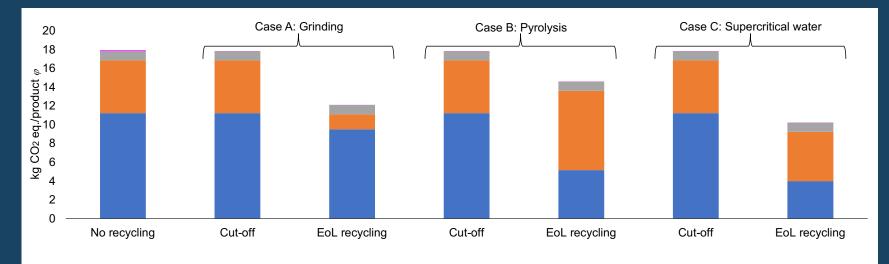
The climate impact of lignin-based carbon fibres

- Functional unit: 1 kg of carbon fibres
 - 50% Kraft-lignin and 50% bio-PU OR 100% PAN
- Production is taking place in Germany
- Economic allocation used in the kraft pulp mill
- Different development routes were assessed:
 - The lignin based carbon fibres require less energy
 - More efficient spinning of fibres
 - Price of lignin increases
 - Decarbonized energy system

The climate impact of lignin-based carbon fibres

Hermansson (2020)

- Early project assessment
- The climate impact of lignin-based carbon fibres
- <u>The climate impact of recycling of CFRP and recovery of fibres</u>
- The future climate impact of CFRP



The climate impact of recycling of CFRP and recovery of fibres

- Recycling of CFRP was assessed in three fictious recycling systems
 - Grinding
 - Pyrolysis
 - Supercritical water
- Three different allocation approaches were used
 - Cut-off apporach
 - End-of-life recycling approach
- Allocation approaches were redefined to allocate the recycling impacts between the polymer and the fibre

The climate impact of recycling of CFRP and recovery of fibres

Fiber Polymer Product manufacturing Disposal: Landfill

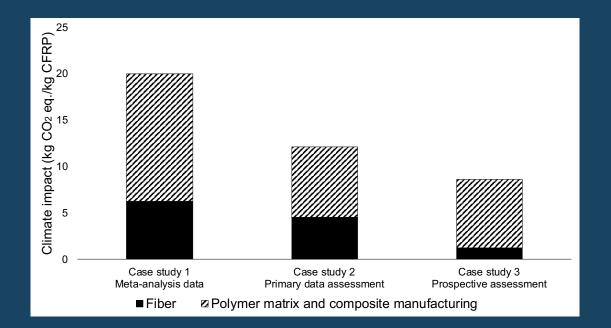
Adapted from Hermansson et al. (2022)

- Early project assessment
- The climate impact of lignin-based carbon fibres
- The climate impact of recycling of CFRP and recovery of fibres
- The future climate impact of CFRP

The climate impact of CFRP

- Findings were applied in a cradle-to-gate LCA
 - Functional unit: 1 kg CFRP, 20 wt% fibres, 80 wt% polymer
- Case study 1
 - · Results from meta analysis recalculated

Case study 2


• Primary data as much as possible

Case study 3

- Changes in foreground system:
 - Using lignin as raw material
 - Using microwave tech. In carbon fibre production phase
 - Using recycled carbon fibres

The future climate impact of CFRP

Some final comments

- The carbon fibre production is the hotspot
 - Decrease energy consumption
- All suggested routes proved fruitful for decreasing the climate impact of CFRP
 - Recycling of composites has the highest technology readiness level
 - Might be the route most likely to soon be implemented

References

- Hermansson, F. (2020). Assessing the future environmental impact of lignin-based and recycled carbon fibres in composites using life cycle assessment. Chalmers Tekniska Hogskola (Sweden)
- Hermansson, F., Ekvall, T., Janssen, M., & Svanström, M. (2022). Allocation in recycling of composites - the case of life cycle assessment of products from carbon fiber composites. *Int. J. Life. Cycle. Assess., 27*(3), 419-432. doi:https://doi.org/10.1007/s11367-022-02039-8

Acknowledgement

 The authors gratefully acknowledge the members of the LIBRE project for their data input and collaboration as well as Chalmers University of Technology - Energy Area of Advance (ECE profile) for funding.

CHALMERS