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The predicted amount of wasted carbon fibre:
10000t in 2005 --- 57,000t in 2010 --- 88,000t in 2015 --- 130,000t in 2020
263,000t in 2030 "

Fibre
Recovery
L Establishing a closed-loop life cycle for
CFRP composites is crucial to protect our
environment and to maximise material
utilisation and energy efficiency.
.Fibre
Realignment

Remanufactunng -

[1] Witik, R. A., Teuscher, R., Michaud, V., Ludwig, C. and Ménson, J.-A. E. (2013). Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling. Composites Part A: Applied Science and
Manufacturing, 49, 89-99.
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environmental

protection

Minimise the
amount of CFRP
waste sent to
landfill

Reduce non-
renewable energy
consumption

Minimise the green
house effect

‘green

engineering’

expand the
material options
for ‘green
engineering’ which
is defined as
building with fewer
negative effects on
the natural
environment,
society and human
health

Circular
economy

Revitalise the
economic value of
carbon fibre in
composites

Reduce the cost for

FRP manfacuting

Social,

economic and

commercial
benefits

More suited for
medium and even
small-sized
businesses, as
equipment and
operating costs will
be reduced
compared to
existing methods
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140
120 o _
100 Considering NPV and BCR analysis
results for CFRP recycling methods,
£ 80 pyrolysis combined with oxidation could
g“j 60 achieve greatest profitability rate with
8 40 lower expenditure (i.e. higher BCR) while
20 alkali solvolysis can achieve the highest
total net profit value with higher
CFRP expenditurel?].
H landfill B [ncineration Mechanical
m Catalytic pyrolysis m Oxidation Pyrolysis + Oxidation
B Fluidised bed ® Solvolysis (acid) B Solvolysis (alkali)
Electrochemical

The University of Sydney 191 Wei, Y. and Hadigheh, S. A. (2022). Cost benefit and life cycle analysis of CFRP and GFRP waste treatment methods. Construction and Building Materials,
Volume 348, 128654, https://doi.org/10.1016/j.conbuildmat.2022.128654.
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Arrhenius-type Kinetic analysis and FRP thermal degradation mechanisms

Developing a CFRP thermal degradation process via parameter optimisation

and investigating the properties of recycled carbon fibres

The University of Sydney
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Arrhenius-type kinetic analysis and FRP thermal degradation mechanisms
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Discover the effects caused by *  Simplify investigation process

changing heating rate *  Reduce the assumption errors made

More accurate result for the before operating the experiments

specific heating condition
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Trendline parameters (slope, a, and x-interception,
b) and R2 values correspond to conversion
fractions in Friedman method

Conversion For figure (c)

Fraction, o | a (x10%) b R2
0.1 -1.90 23.78 0.85
0.2 -2.15 27.85 0.74
0.3 -2.16 27.88 0.79
0.4 -2.53 33.03 0.71
0.5 -3.10 40.32 0.58
0.9 -5.12 44.40 1.00

Friedman method
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(a and b) Results derived from OFW and (c and d) KAS method; (a and c¢) Ln(B/T?) versus 1/T,
and (b and d) regression lines corresponding to each conversion fraction (values of a, b and R2
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Trendline parameters (slope, a, and x-interception, b)
and R2 values correspond to conversion fractions in

KAS method

Conversion For figure (d)

Fraction, o | a (x10%) b R?
0.1 -2.16 18.26 0.54
0.2 -1.86 14.27 0.66
0.3 -1.72 12.47 0.71
0.4 -1.61 11.17 0.75
0.5 -1.27 6.52 0.88
0.9 -2.89 14.21 0.76

are shown in Table 2).

OFW method
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Starink method

l —ﬁ = —1.0008 £ +C
Mrtez) =+ RT

-10

-12 Lifting up the curve > Starink method follows the same approach as
- that of KAS method but redefines the

- preliminary assumption of E/RT; based on the
-14 experimental results of solid-state thermal
decomposition reaction.

» This approximation results in the adjustment
-16 11 = KAS Method of exponent parameter of T from 2 to 1.92,

. which can be reflected in curve lifting of
—Starink Method In(B/T*) versus 1/T.

-18 T | !
1.0 1.5 2.0 25 3.0 35 » This modification can provide more accurate
result for FRP composite decomposition

1/T (X 1 0-3) kinetics.

The University of Sydney [3] Hadigheh, S. A., Wei, Y. and Kashi, S. (2021). Optimisation of CFRP composite recycling process based on energy consumption, kinetic behaviour and

thermal degradation mechanism of recycled carbon fibre. Journal of Cleaner Production. Volume 292, 125994, https://doi.org/10.1016/j.jclepro.2021.125994.
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CFRP Recycling

Heating rates
(°C/min)

Atmospheric Isothermal
conditions — dwelling
inlet flow rate time of pyrolysis

of nitrogen (ml/min) (min)

The University of Sydney
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SEM images of fibres: (a), (b) and (c) show fibres treated with pyrolysis SEM images of fibres: (a), (b) and (c) show fibres treated with pyrolysis
only (fibres heated to 800 °C at 30 °C/min heating rate and 60 min isother-  only (fibres heated to 800 °C at 30 °C/min heating rate and 60 min isother-
mal dwelling time); (d). (e) and (f) show fibres treated with effective pyrol- mal dwelling time); (d), () and (f) show fibres treated with effective pyrol-

ysis and oxidation (fibres heated to 425 °C under nitrogen and then oxi- ysis and oxidation (fibres heated to 425 °C under nitrogen and then oxi-

dised at temperatures up to 550 °C at 15 °C/min heating rate and 60 min dised at temperatures up to 550 °C at 15 °C/min heating rate and 60 min

1sothermal dwelling time). 1sothermal dwelling time).

The University of Sydney
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Chemical pre-treatment under 80 °C with 60 mins
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PR —r ><_,/_ Chemical pre-treatment + Thermal recycling
] z

Two-part Epoxy Resin Carbon Fibre PerlySiS' Oxidation:
2 d :

Soaking CFRP waste

. " ati FRP - it P e a6t
in 0.1 M acetic acid solution. Heating CFRP under nitrogen Heating CFRP under air

\ heating up to 100C to 425°C to 550°C
CI'RP Composite »

Liebig * % —
condenser |
; TGA :
chamber — S===3

CFRP

Conical flask TGA

Acetic acid CFRP chamber —

CFRP

Heating

platform

Recycled
carbon fibre

The strength of the recycled fibres was preserved at over 90% of their virgin state, which is
10.21% higher than the strength of recycled fibres recovered via thermal degradation only.

[4] Wei, Y. and Hadigheh, S. A. (2023). Development of an innovative hybrid thermo-chemical recycling method for CFRP waste recovery, Composites Part B: Engineering, Volume 260,
110786, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110786.



Practical Application

CFRP WASTE RECYCLING

Chemical pre-treatment:
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in 0.1 M acetic acid solution,
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Practical Application

Recovered carbon fibre from (a) and (c) bike fork with coating and (b) and (d) bike fork
without coating (coating removed via fine graded polishing) prior to recycling process
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10 11

Tensile strength (a and ¢) and modulus (b and d) of recovered fibres from airplane
wastes, and (e and f) SEM images with magnification of () x1500 and (f) x3000
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A closed-loop CFRP life cycle can reduce pollution by decreasing waste disposal, maximise material use and
save energy. This contributes to the circular economy and environmental protection.

To optimise CFRP composite recycling, energy consumption, kinetic behaviour and thermal degradation
mechanism during pyrolysis were studied.

The proposed recycling procedure includes solvolysis pre-treatment of CFRP at 100 °C, followed by pyrolysis
up to 425 °C and oxidation up to 550 °C with a heating rate of 15 °C /min.

Additional solvolysis procedure can increase retention of fibre’s mechanical properties by decreasing heat
consumption during recycling. When proper pre-treatment was used prior to thermal deterioration, the strength
of recycled fibres can be preserved at over 90% of their virgin state.

By putting this technology in practise, the results of recycling bicycle and aircraft components demonstrated that
the parameters must be slightly altered for various types of CFRP based on the matrix type. In addition, the
coating should be thoroughly removed from the components prior to waste recycling to prevent major fibre
damage during the polishing process.

The University of Sydney
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