

THIN-PLY COMPOSITE MULTIFUNCTIONAL STRUCTURE

ICCM23

23rd International Conference on Composite Materials (ICCM)

Bruno Giuntoli, Rajasundar Chandran, Gioele Balestra, Joël Cugnoni

August 1st 2023

PROJECT SCOPE & PARTNERS

2

The Multi-Functional Structures (MFS) project objectives:

- Study the integration possibilities of thin-ply MFS layers into high performance principal structures.
- Determination of conductive traces deposition into composites (i.e. ink-jet)
- Evaluation of the structural capabilities and design limitations.
- MFS testing for FEM correlation and functional parts modelling.

PROJECT SCOPE & PARTNERS

Hes·so Haute Ecole Spécialisée HAUTE ÉCOLE

VD **D'INGÉNIERIE ET DE GESTION DU CANTON DE VAUD**

Expertise:

- Thin-ply composite materials
- Composite Additive Manufacturing (AM)
- Fast Prototyping

HE IG

Thin-ply composite airframe structure

iPrint Center Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

Expertise:

de Suisse occidentale

- Additive manufacturing
- Multi-material AM (conductive inks)
- Ink-jet printing specialists

Multi-Functional Structures (MFS) design and manufacturing process:

Electronic schematic diagram

PCB design traces

Ink-jet printed circuit (double sided)

PCB Design CAD render

Geometrical design space

Integrated component into PCB

SUBSTRATE PREPARATION

CONSTRAINTS

CIRCUIT DESIGN

Hes.so Haute Ecole Spécialisée de Suisse occidentale

& MANUFACTURING

DESIGN

4

PROCESS

MFCP MATERIALS & PROCESSING

5

Multi-Functional Composite Ply (MFCP) Materials and processing:

6

TECHNOLOGY ASSESSMENT

Data acquisition

- The Load-Displacement-Time data was correlated to the traces resistance and strain gauges data.
- A twin-channel milli-ohm resistance and strain measuring apparatus was developed for this purpose.

7

TESTING

TENSILE

Objectives:

0

- Evaluation of the resistance variation and maximum strain capabilities of the conductive traces
- Thin-ply printed specimen bonded to a QI 3mm pre-cured GFRP plate.
- Two traces per specimen with a **5mm control trace** on the left side.
- Five traces evaluation, 0.4mm, 0.6mm, 1.0mm, 2.0mm and 5.0mm

8

TESTING

TENSILE

Results:

- Failure of the GFRP composite support prior to the failure of the conductive trace
- On first loading electric resistance does not follow a traditionnal linear scaling with strain: potential preconditionning effect of the sintered nano silver particles on first load cycle.
- Variations of resistance inside the tolerance limits for electronics
- No significant resistance variation (increase) at high strains, no sign of damage before failure of the composite

Trace resistance = 0.2 Ω

TESTING THREE-POINT BENDING

Test objective

• The three point bending test goal was to evaluate the cyclic response of the conductive traces.

• Three sets of 1500 cycles at 0.5% strain were made and measured

Results

0

• No degradation observed for the cyclic bending at 0.5%.

Linear response response between strain and resistance variation in cyclic loading. Potential for sensing applications.

Three point bending setup (conductive traces on tension side)

Rmeter connectors

Cyclic results of traces on GFRP specimen

Hes·so Haute Ecole Spécialisée de Suisse occidentale

TESTING ZEBRA-DCB

Test objective

- The **Zebra-DCB** testing objective was to evaluate the **interlaminar fracture toughness** between different traces width on a constant 1/3 area.
- Four patterns (a, b, c, d as shown on image) were evaluated wit a control length of 30mm
- A "Raw" specimen with no print or treatment was also evaluated as a baseline.

Haute Ecole Spécialisée

HE" IG

11

TESTING ZEBRA-DCB

Fracture surface

2.5mm traces

5.0mm traces

TESTING ZEBRA-DCB

Results:

- Reduction of peak load in DCB test, in line with reduction of toughness.
- Fracture alternates within the multifunctionnal ply and at the interface with ink traces Reduction of toughness larger than rule of mixture: 30% printed area => 50% of fracture energy
- Potential degradation of substrate during NIR particle sintering process: substrate exposed to elevated temperature > Tg for a few seconds

Sufficient toughness for most composite applications, comparable to CFRP composite laminates in mode I

EXAMPLES LED CHASER

MFS "LED Chaser"

- Analogic circuit with 555 + 4017 IC's
- Printed on MFS substrata
- Components bonded using conductive epoxy adhesives
- Challenging procedure on such small components
- New techniques being developed to automate the process

PCB Layout design

ICs size comparison (image: JeeLabs)

MFS working prototype

14

WINGFOIL SMART BOOM

Technology integration: Wingfoil Smart Boom

Gyroscope AD converter 04 RX2 TX2 05 018 019 021 RX0 TX0022 023 Power Data **BMP680** ADS1115 ATM data AD converter

MPU6050

ADS1115

WINGFOIL SMART BOOM

Technology integration: Wingfoil Smart Boom

I2C bus, power and sensing interconnected via MFCPs _____ ESP32 / WIFI + Bluetooth MPU6050 ADS1115 25033032035034 UN UP ET AD converter Gyroscope Sensing Sensing PKCELL UP402025 3.7V 150m/4h I2C Bus Power 11 (#1) Data SDA 3.7v Lilon **BMP680** ADS1115 Battery ATM data AD converter WIFI 4 Standalone Rpi Standalone client server for data data readings acquisition & (multiple clients) communication -578 250 WIFI UBHOST AZ'S KCETT F6405052

Embedded system into the Wingfoil smart handle

Hes·so Haute Ecole Spécialisée de Suisse occidentale

TECHNOLOGY CAPABILITIES

Key Technology Specifications:

- 1. Thin-Ply High definition in-jet printed conductive traces and circuits
- 2. Seamless integration into laminate, including CFRP: multifunctionnal ply thickness with adhesive ~100 microns, very flexible
- 3. High strength structure and fatigue: compatible with most CFRP applications
- 4. Multi-layer circuit capabilities, with Z interconnections
- 5. Type of traces: low power DC bus, digital comm (I2C/SPI), analog signals
- 6. Strain sensing / crack detection or capacitive / touch-sensitive applications

Mechanical Specifications

- **Max strain =** 1.2 % (laminate failure)
- Mode I toughness = 600 J/m²
- Fatigue life @0.5% strain > 1500

Electrical Specifications

- Trace resistance = $0.2 \ \Omega$
- Min trace width = 0.1mm
- Min Trace Space = 0.05mm
- **Current <** 250mA
- Voltage < 120 Volts DC

CONCLUSIONS

Multifunctionnal inkjet printed composite

- No strength reduction due to the printed traces
- Strains > 1.2% tested with no failure
- Traces can be used as strain gauges once preconditioned

- ERR does not correlate with expected values on Zebra DCB specimens
 NIR treatment and sintering process partially damages the substrate
- Prediction is possible using simple cohesive modeling (no bridging)
- Sufficiently high toughness for most applications

Technology is ready to move to industrial applications !

Questions ?

TESTING

ZEBRA-DCB

Zebra-DCB exploded layup

HE" IG

Cohesive zone modeling

Interface	σ_{c} [MPa]	$G_{IC}[J/m^2]$	δ_{c} [mm]
Printed traces	5	100	1/40 δ_{max}
Composite (raw)	35	1350	1/40 δ_{max}
Composite (printed)	15 - 35	600 - 1350	1/40 δ_{max}

Results

Raw specimen

Raw specimen:

Cohesive model with experimental value of Gic matches well the measured load displacement curve.

5.0mm printed traces

1st hypothesis:

Weak interface properties on printed traces Same interface properties as raw on

composite

22

TESTING ZEBRA-DCB

Results

5.0mm printed traces

2nd hypothesis:

Weak interface properties on printed traces Altered interface properties of composite Identified Gic composite interface = ~ 800 J/m2

IR sintering of ink degrades the GFRP printing substrate!

Hes·so Haute Ecole Spécialisée de Suisse occidentale

EXAMPLES LED CHASER

MFS "HydroFoil Wing"

- I2C Digital circuit with Magnetometer and atmospheric sensors
- Digital bus (VCC,GND,Data,CLK)
- Typical Prepreg manufacturing process of layers (visible for demo purposes)

(1) Mould preparation

(2) Pre-preg stacking and debulking

(3-4) Printed substrates integration

(5-6) Layup continuation

(7) Standard composite part curing

(9) Demoulding and trimming to final shape

