Analysis of Sandwich Panels Under Several Load Cases with Consideration of Core Compression

Hussam Georges^{1,2)}, Christian Mittelstedt¹⁾ and Wilfried Becker²⁾ International Conference on Composite Materials 30. July – 04. August 2023, Belfast North Irland

Institute for Lightweight Engineering and Structural Mechanics, Technical University of Darmstadt, Germany
Institute of Structural Mechanics, Technical University of Darmstadt, Germany

Sandwich Panels Under Localized Loads

core

• Core failure: one of the dominated

failure modes in sandwich panels

• Transverse normal stresses and core

indentation induced by concentrated

loads not predictable by common

sandwich theories

Agenda

- 1. Sandwich model
- 2. Higher-order displacement representations
- 3. Load cases
- 4. Results

MASCHINENBAU We engineer future

5. Conclusion and outlook

Sandwich Model

- 2D Sandwich model (plane-strain state)
- Isotropic face sheets
- Orthotropic core material:
 - Effective properties of a lattice structure
- Prediction of core stresses

Modeling Approach

•
$$\Pi_{i}^{(n)} = \frac{1}{2} \int_{-l/2}^{l/2} \int_{-h^{(f)}/2}^{h^{(f)}/2} \left(\sigma_{xx}^{(n)} \varepsilon_{xx}^{(n)} + \tau_{xz}^{(n)} \gamma_{xz}^{(n)} \right) dz dx$$

Higher-Order Displacement Representations

- $w^{(c)} = \frac{w_0^{(1)} + w_0^{(2)}}{2} + \frac{w_0^{(2)} w_0^{(1)}}{h^{(c)}} z + \tilde{w}\tilde{F} + \hat{w}\hat{H} + \breve{w}\breve{R}$
- $\varepsilon_{xx}^{(c)} = \frac{\partial u^{(c)}}{\partial x}, \quad \varepsilon_{zz}^{(c)} = \frac{\partial w^{(c)}}{\partial z}, \quad \gamma_{xz}^{(c)} = \frac{\partial w^{(c)}}{\partial x} + \frac{\partial u^{(c)}}{\partial z}$
- $\tilde{F}(z) = \left(1 \frac{4z^2}{h^{(c)^2}}\right)$
- $\hat{H}(z) = \tilde{F}(z) z$
- $\breve{R}(z) = \tilde{F}(z) z^2$

Core's Potential Energy

- $\Pi_{i}^{(c)} = \frac{1}{2} \int_{-l/2}^{l/2} \int_{-h^{(c)}/2}^{h^{(c)}/2} \left(\sigma_{xx}^{(c)} \varepsilon_{xx}^{(c)} + \sigma_{zz}^{(c)} \varepsilon_{zz}^{(c)} + \tau_{xz}^{(c)} \gamma_{xz}^{(c)} \right) dz dx$
- $\Pi = \Pi_{i}^{(1)} + \Pi_{i}^{(2)} + \Pi_{i}^{(c)} + \Pi_{e}$
- $\delta \Pi = 0 \rightarrow$ 12 coupled second-order differential equations

•
$$\underline{\dot{\Phi}} = \underline{\underline{E}} \ \underline{\Phi}$$
, with $\underline{\Phi} = \begin{bmatrix} \underline{\Psi} \\ \underline{\dot{\Psi}} \end{bmatrix}$, and $\underline{\Psi} = \begin{bmatrix} u_0^{(1)} & u_0^{(2)} \dots \end{bmatrix}^T$

• General solution: $\underline{\Phi}_h = \sum_{m=1}^{24} K_m \underline{v}_m \ e^{\lambda_m x}$

FE Model

- 2D analysis using Abaqus •
- Plane strain quadratic solid elements ٠
- $E^{(f)} {=} \textbf{70000} \text{ MPa}$, $\nu^{(f)} {=} \textbf{0.35}$
- Thin face sheets: $\frac{h^{(c)}}{h^{(f)}} = 15$
- Thick sandwich: $\frac{l}{h^{(c)}} = 4$

MASCHINENBAU We engineer future

F

F

 $h^{(c)}$

3-Point Bending

4-Point Bending

Fixed-End Sandwich Beam

Restrained Sandwich Beam

Introducing Mathematical Sublayers

•
$$u^{(c,j)} = \chi^{(c,2)} + 2 \frac{\chi^{(c,j+1)} - \chi^{(c,j)}}{h^{(c)}} z + \tilde{u}^{(c,j)} \tilde{F}^{(c,j)} + \hat{u}^{(c,j)} \hat{H}^{(c,j)}$$

• $w^{(c,j)} = \zeta^{(c,2)} + 2 \frac{\zeta^{(c,j+1)} - \zeta^{(c,j)}}{h^{(c)}} z + \tilde{w}^{(c,j)} \tilde{F}^{(c,j)} + \hat{w}^{(c,j)} \hat{H}^{(c,j)}$

•
$$\tilde{F}^{(c,j)}(z) = \frac{8(3-2j)}{h^{(c)}} z - \left(\frac{4}{h^{(c)}} z\right)^2$$

• $\hat{H}^{(c,j)}(z) = \tilde{F}^{(c,j)}(z) | z$

Localized Deformation on Edges

Conclusion

- Efficient determination of core compression in several load cases
- Sufficient prediction of critical core stresses induced by concentrated loads
- Capturing of localized free-edge deformation by introducing mathematical layers
- Outlook:
 - Grading the core material and optimizing the core weight

Hussam Georges, M.Sc.

+49 6151-16 22024

⊠ <u>hussam.georges@klub.tu-darmstadt.de</u>

Technical University of Darmstadt, Germany

Institute for Lightweight Engineering and

Structural Mechanics

www.klub.tu-darmstadt.de

