Contact-free porosity detection in composite parts by a pore resonance mechanism

M. Fürst, ^{1,*} M. Brauns, ¹ B. Mauel, ¹ N. Panzer, ¹ M. Dambaur, ² B. Fischer ¹

- ¹ XARION Laser Acoustics
- ² Airbus Helicopters Germany
- * m.fuerst@xarion.com

Acoustic resonance - an everyday phenomenon, useful for NDT?

Can we use this for CFRP testing?

Outline

1. Motivation

- 2. Laser-excited Acoustics measurement system
- 3. Experimental results
- 4. Conclusion and Outlook

Why inspect finished CFRP parts?

To prevent structural failure

non-destructive testing is obligatory

Image source: Robert Nichols / Picture Alliance

Why inspect finished CFRP parts?

Material damage can occur in fabrication or during use

Image source: Kreculj, D. & Rasuo, B. (2018). Impact damage modeling in laminated composite aircraft structures.

The widespread use of CFRP in the aerospace sector necessitates NDT

- CFRP makes up about 50% of the weight of modern aircraft
- Low porosity levels are essential for ensuring the performance of CFRP composite structures. [1]

[1] Birt et al, 2004, "A review of NDE methods for porosity measurement in fibre-reinforced polymer composites." *Insight-Non-Destructive Testing and Condition Monitoring*, 46(11), pp.681-686.

Image source: https://www.modernairliners.com/boeing-787

State of the art in Ultrasonic testing

- Ultrasound is a widespread technique for non-destructive testing CFRP parts
- Conventional air-coupled Ultrasound suffers from low resolutions
- Liquid-coupled ultrasound achieves high resolution, but is either impractical or even prohibited in many cases [2]
- Laser ultrasonic testing (with laser Doppler vibrometer) is highly dependent on sample surface reflectivity and roughness [3]
- Laser Excited Acoustics (LEA) is an alternative non-contact technique that is independent from surface properties! [4]

Liquid-coupled Ultrasound

^[2] Vanderheiden et al, 2018, "Transition to high rate aerospace NDI processes", AIP Conference Proceedings 1949, p. 020003

^[4] Fischer et al., 2019, "Impact damage assessment in biocomposites by micro-CT and innovative air-coupled detection of laser-generated ultrasound", Composite Structures 210, pp. 922-931

^[3] Aguado et al, 2015, "Laser ultrasonic inspections of aero-nautical components validated by computed tomography" Proc. of 7th International Symposium on NDT in Aerospace

Outline

1. Motivation

2. Laser-excited Acoustics measurement system

3. Experimental results

4. Conclusion and Outlook

Operation principle of Laser-excited Acoustics (LEA)

Broadband excitation meets broadband detection

Broadband, non-contact excitation

- Excitation by short laser pulse (few ns)
- ❖ Short pulse width → broad frequency spectrum

Short pulse

Compare: Piezo excitation

Broadband, non-contact detection

 Optical Microphone serves as broadband ultrasound detector (10 Hz - 2MHz)

XARION Laser-acoustics measurement system for Composite NDT

Sample inspection result of CFRP honeycomb sandwich with LEA technology

Brauns et al, 2021, "Laser-Excited Acoustics for Contact-Free Inspection of Aerospace Composites." *Materials Evaluation* 79, no. 1 (2021): 28-37.

Broadband capabilities enable detection of local resonances

- When ultrasound propagates through a sample, the spectrum of the initial waveform changes, e.g. due to
 - Sample thickness resonance [5] or
 - Local defect resonance [6]
- The resonance frequencies depend on the speed of sound in the material:
 - E.g. thickness resonance in steel (c = 5000 m/s)
 - Sound wave with f = 2 MHz:
 → wavelength 2.5 mm, thickness resonance for 1.25 mm
 - E.g. resonance of air bubble (c=340 m/s)
 - Sound wave with f = 500 kHz: \rightarrow wavelength 680 µm, thickness resonance 340 µm

[5] Solodov et al, 2011"A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation, Appl. Phys. Lett. 99, p. 211911,

[6] Rus et al, 2021, "Thickness measurement via local ultrasonic resonance spectroscopy", Ultrasonics 1 09, p. 106261

Outline

1. Motivation

2. Laser-excited Acoustics measurement system

3. Experimental results

4. Conclusion and Outlook

Experiments - samples

- CFRP samples with regions of varying porosity
- Porosity percentages verified with micro-CT and conventional UT

Results - XARION LEA C-scan images of samples

- Signal is bandpass-filtered from 200-700 kHz, acoustic energy is displayed
- Individual pores can be visualized

Photo of sample

Results - Pores exhibit resonance, which can be seen in A-Scans

Frequency analysis reveals size of pores!

Pores as "thickness resonators"

$$d = \frac{c}{2 * f_0}$$

Outline

1. Motivation

2. Laser-excited Acoustics measurement system

3. Experimental results

4. Conclusion and Outlook

Conclusion

- Laser-excited acoustics enables NDT of aerospace composites with
 - no contact
 - no water or coupling liquid
- Regions of different porosity can be clearly distinguished
- Individual pores can be resolved through a pore resonance mechanism
- Spectral analysis allows the estimation of individual pore size
- Calculated pore sizes match typical CFRP pores

LEAsys turnkey system

... and Outlook

https://www.youtube.com/watch?v=m-o7C7s02E4

Contact-free porosity detection in composite parts by a pore resonance mechanism

M. Fürst, M. Brauns, B. Mauel, N. Panzer, M. Dambaur, B. Fischer

m.fuerst@xarion.com, opticalmicrophones@xarion.com

XARION Laser Acoustics GmbH ICCM 23, July 30th to August 4th, Belfast, UK

