Fabrication and Evaluation of Polyurethane Nanocomposites with Plasma-Modified Carbon Nanotubes

Hikaru Fukuda¹, Seira Morimune-Moriya^{2*}, Daisuke Ogawa², Keiji Nakamura² ¹ Department of Applied Chemistry, Graduate School of Engineering, Chubu University, Aichi, Japan ² Faculty of Engineering Department of Applied Chemistry, Chubu University, Aichi, Japan

1

Introduction

Nanocarbon: nano-sized carbon material

High thermal conductivity and mechanical strength

However

- Strong van der Waals forces, easy to aggregate
- Poor interfacial interaction

Introduction

Plasma treatment Carbon nanotubes(pCNT)

Daisuke Ogawa Laboratory, Department of Electrical and Electronic Engineering

Introduction

solution mixing method

Introduction This study *In-situ* polymerization

Matrix: Polyurethane (PU) Filler: Carbon nanotubes (CNT)

PU/CNT Composites

7

Sample Preparation

Synthesis of PU/CNT composites

Polyol: Polytetramethylene oxide Isocyanate: Hexamethylene diisocyanate

Sample Preparation

Polyurethane molding

Melt Press Forming

CNT Fill Rate extremely small quantity : 0.01 wt% or 0.02 wt% or 0.03 wt% small quantity : 0.1 wt% or 0.3 wt% or 0.5 wt%

Approx. 200 µm

Figure Optical images of PU and various PU/CNTs nanocomposites

Figure Optical images of PU and various PU/CNTs nanocomposites

Figure. SEM images of PU and PU/CNT composite materials

Figure. SEM images of PU and PU/CNT composite materials

Figure. SEM images of PU and PU/CNT composite materials

Figure. Thermogravimetric curves of PU and PU/CNTs nanocomposites

Figure. Pyrolysis temperatures of PU and PU/CNTs nanocomposites

Figure. Stress-strain curves of PU and various PU/CNTs nanocomposites

Figure. Elastic modulus of PU and various PU/CNTs nanocomposites

Figure. Tensile strength of PU and various PU/CNTs nanocomposites

Figure. Fracture strain of PU and various PU/CNTs nanocomposites

Figure. Toughness of PU and various PU/CNTs nanocomposites

In very small quantities, the film maintained transparency, but in smaller quantities, agglomerates were seen.

Thermophysical properties showed a high rate of increase for small volume fills.

In terms of mechanical properties, both elastic moduli showed a high rate of increase, while other properties showed a high rate of increase for very small volume fillings.

Thank you for your attention.