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o Injection-moulded short-fibre composites

Advantages Applications in automotive

Switch

o Lightweight Door mirror

2 Complex 3D geometries

2 Short manufacturing cycles Engine mount

Canister

o Automatic processing
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e Challenge: complex skin-core microstructure

Injection moulding Cross-section
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e Challenge: complex skin-core microstructure

Injection moulding Cross-section
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Challenge: complex skin-core microstructure

Injection moulding
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State-of-the-art coupled process-structural simulation (coupled FEA)

Process simulation
(local fibre orientation)

PA66GF50 component Impactor

Calibration of Digimat's
elastic-plastic material model

Experiments
= (Calibrated model
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State-of-the-art coupled process-structural simulation (coupled FEA)

Process simulation
(local fibre orientation)

PA66GF50 component Impactor

Structural FE simulations coupled with
process simulation (coupled FEA)

Calibration of Digimat's
elastic-plastic material model

Fibre orientation mapping at each
integration point in Abaqus FE model

— YT

----- Experiments

— Calibrated model Assign unique mechanical properties to each integration

point based on mapped fibre orientation tensor
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State-of-the-art coupled process-structural simulation (coupled FEA)

Process simulation
(local fibre orientation)

PA66GF50 component Impactor

Calibration of Digimat's
elastic-plastic material model

Structural FE simulations coupled with
process simulation (coupled FEA)
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Coupled FEA with existing failure criteria for SFRPs
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Develop a Finite-Element (FE) methodology to predict failure of injection-

moulded short-fibre reinforced Polyamide 6.6 composites (PA66-GF50),
by accounting for the material’s progressive failure

Level 3: components

A Applying the developed FE methodology to
A 2 automotive components

Level 2: subcomponents

ﬁ 4 Developing a new FE methodology for
failure prediction

Level 1: coupons o _
: Characterising material

properties



e Level 1: coupons (Gc characterisation by CT tests)

2 Clear effect of fibre orientation and environmental conditions

2 FE simulations with CZM showed excellent agreement not only the peak load but also the subsequent
gradual load decrease
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o Level 2: subcomponents (developing FE methodology)

Cohesive zone modelling (CZM)
2 Assignment of cohesive elements (CE) to fracture plane
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Level 2: subcomponents (developing FE methodology)

Cohesive zone modelling (CZM) Extrapolation of material properties

2 Assignment of cohesive elements (CE) to fracture plane o> FEA (CZM) showed excellent agreement of
maximum failure load (within 2.6%)
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e Level 3: components (application of the developed methodology)
o FEA (CZM) showed excellent agreement of failure load (error: 2.1%)
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: Conclusions Poster number: P0O39

Failure prediction of injection-moulded short-fibre
P0O39

composites: characterisation and prediction

FEA using CZM have been demonstrated to from coupons to components
accurately predict the failure of et eiacE
(njection-moulded PA66-GF50 components

based on experimentally-measured fracture toughness
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- Provide more confidence in the design of the components in industry
- Contribute to design lighter and more costly-effective components
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