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Applications in automotiveAdvantages

Injection-moulded short-fibre composites

Door mirror

Engine mount

Radiator tank Head covers

Canister

Switch- Lightweight

- Complex 3D geometries

- Short manufacturing cycles

- Automatic processing

 Lightweight

 Complex 3D geometries

 Short manufacturing cycles

 Automatic processing
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Challenge: complex skin-core microstructure
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Fibre orientation tensor

Challenge: complex skin-core microstructure
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Fibre orientation tensor Effect of fibre orientation on tensile properties

Challenge: complex skin-core microstructure
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State-of-the-art coupled process-structural simulation (coupled FEA)
Process simulation 

(local fibre orientation)
Calibration of Digimat’s

elastic-plastic material model
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State-of-the-art coupled process-structural simulation (coupled FEA)
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Structural FE simulations coupled with 

process simulation (coupled FEA)

Fibre orientation mapping at each 

integration point in Abaqus FE model

Assign unique mechanical properties to each integration 

point based on mapped fibre orientation tensor
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State-of-the-art coupled process-structural simulation (coupled FEA)
Process simulation 

(local fibre orientation)
Calibration of Digimat’s

elastic-plastic material model

Coupled FEA with existing failure criteria for SFRPs
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Structural FE simulations coupled with 

process simulation (coupled FEA)

Fibre orientation mapping at each 

integration point in Abaqus FE model

Assign unique mechanical properties to each integration 

point based on mapped fibre orientation tensor

Existing failure criteria for SFRPs (i.e. Tsai-Hill) under-predict the failure load: 

they consider failure initiation only and neglect material’s fracture toughness
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Objectives

Develop a Finite-Element (FE) methodology to predict failure of injection-

moulded short-fibre reinforced Polyamide 6.6 composites (PA66-GF50), 

by accounting for the material’s progressive failure

Applying the developed FE methodology to 

automotive components

Developing a new FE methodology for 

failure prediction

Characterising material 

properties

Level 2: subcomponents

Level 3: components

Level 1: coupons
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Level 1: coupons (Gc characterisation by CT tests)
 Clear effect of fibre orientation and environmental conditions

 FE simulations with CZM showed excellent agreement not only the peak load but also the subsequent 

gradual load decrease
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Assignment of properties based on fibre orientation in the component

 𝑎11=0.8 (skin) and 𝑎11=0.2 (core)

Level 2: subcomponents (developing FE methodology)
Cohesive zone modelling (CZM)

 Assignment of cohesive elements (CE) to fracture plane
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Assignment of properties based on fibre orientation in the component

 𝑎𝑥𝑥=0.8 (skin) and 𝑎𝑥𝑥=0.2 (core)

Level 2: subcomponents (developing FE methodology)
Cohesive zone modelling (CZM)

 Assignment of cohesive elements (CE) to fracture plane
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Extrapolation of material properties
 FEA (CZM) showed excellent agreement of 

maximum failure load (within 2.6%)
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Level 3: components (application of the developed methodology)

 FEA (CZM) showed excellent agreement of failure load (error: 2.1%)
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Excellent failure prediction of 

Conclusions

- Provide more confidence in the design of the components in industry

- Contribute to design lighter and more costly-effective components

FEA using CZM have been demonstrated to 

accurately predict the failure of 

injection-moulded PA66-GF50 components

based on experimentally-measured fracture toughness
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