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In automated deposition processes such as forming:

• The material undergoes large deformations

• There may be a large number of parts with evolving 

interactions (such as contact) between them:

– Mould

– Material layers

– Diaphragm or punch

– Grip holders

• Unlike sheet metal forming, the workpiece (laminate) 

is composed of multiple orthotropic material plies 

with different fibre orientations

Composites Forming Simulation Challenges

Farnand et al (2017)* 

* Farnand et al (2017), Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of 

unidirectional prepreg composites, Part A: Applied Science and Manufacturing. ;103:168–77. 



• Physics-based modelling is founded on our 

understanding of causality of events. 

• The phenomena of interest are modelled 

using mathematical representations

• In Process Simulation, a physics-based model 

needs to include representations of:

– Material being processed: its incoming state, its 

evolution when subjected to process conditions

– Process: Sequence of events and boundary 

conditions

– Equipment: Interaction of the equipment with 

material and its effect on process conditions
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Physics-Based Forming Simulation
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Key Deformation Mechanisms

Ply Bending & Buckling

Ply Transverse Shear & Logrolling

Debulk & ConsolidationTool-Part interaction

Interlaminar (shear/friction, stick-slip, tack)Ply In-plane (axial, shear, locking)



• Fixture inspired by original 

Sachs(2014)* design

• Fixture features:

– Double roller design: minimizing 

frictional effects and providing 

uniform bending moment

– Fixed sample length

• Fully definable test conditions:

– Temperature

– Bending Rate

– Bending Angle and Radius of 

curvature

– Loading/Relaxation/Unloading 
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Prepreg Bending

Characterization Test

Bending characterization 

fixture installed in a rheometer

Top view of the double-roller 

design

* U. Sachs (2014), Friction and bending in thermoplastic composites forming process, PhD Dissertation, 

Universiteit Twente. 

For more information see: Lane et al (2023), Characterization testing of un-cured prepreg fabrics for forming 

process. Proceedings of SAMPE Seattle 



Loading
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Prepreg Bending

Relaxation



• Fiber micro buckling is observed in bending samples

• This inspired development of a non-linear 

viscoelastic model that is schematically represented 

as a hinge on a viscoelastic bed

8

Prepreg Bending

Constitutive Modelling: Non-linear Viscoelastic

Model fit examples



• Tack is the measure of the resistance to 

separation of two surfaces 

• A prepreg-to-prepreg probe tack test 

fixture was developed in house:

– Relatively large contact area (1”x1”)

– UD or Fabric testing

– Testing prepregs at relative angles (0-0, 0-90, 

0-45, …)

– Control over process parameters:

• Temperature

• Cohesion Pressure

• Dwell time

• Separation rate

• Moisture 

• …
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Prepreg Tack

Characterization Test

For more information see: Lane et al (2023), Characterization testing of un-cured prepreg fabrics for forming 

process. Proceedings of SAMPE Seattle 
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Prepreg Tack

Characterization Tests

        
                

     
                

         
                       



Cohesion Model 
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Prepreg Tack Constitutive Model 

Decohesion Model

Degree of 

Intimate Contact

Degree of Intimate Contact: 

𝐼 = 𝑒
−
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Model Fit Example

Probe Tack



Transverse Shear
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Shear Mechanisms

In-plane Fabric 



State-variable based, expandable material model database

Integrated MATERIAL PROPERTIES

• 140+ constitutive models

• Largest high-fidelity process simulation

composite materials library anywhere:

– 30+ open data sets

– 10+ Distribution C data sets (created for and 

managed on behalf of the US Government)

– Many more proprietary data sets created 

for customers

• Interlinked process parameters

• User-defined Constitutive Models
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Comprehensive Library of Material Constitutive Models

Common Component Architecture (CCA)



16

Simulation Framework

Ply Bending: D stiffness

Ply Transverse Shear & Logrolling

Debulk & ConsolidationTool-Part interaction

Interlaminar (friction, stick-slip, tack)Ply In-plane: A stiffness 

Shell Element Contact Algorithm Solid + Shell Element †

† Silva et al, Defect prediction during forming and consolidation of composite 

materials using finite element analysis, ASC 34th Technical Conference, 2019
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Forming Simulation Solution Levels

Solution 

Level
FE Representation Application Features Solver

Computational 

Cost

1 Single Membrane Dry fabric forming Shear locking Explicit Fast

2 Ply-wise Shell

Hot Drape Prepreg Forming

• Effect of temperature and evolving 

degree-of-cure/crystallization

• Effect of forming rate

Level 1 +

• In-plane / bending decoupling

• Elastic/Viscoelastic behaviour

• Temperature and DoC dependencies

Explicit

Fast to 

Moderately

Expensive

3

Ply-wise Shell +

PU Solid 

(optional thermal 

analysis coupling)

Cross-section Prepreg Forming

• Level 2 +

• Consolidation & wrinkling

• Non-uniform temperature/cure

Level 2 +

• Debulk and consolidation

• Resin flow

• Thermal predictions

Implicit 

Dynamic
Expensive
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C-Channel Example

Shell-based Simulation

• Plies modelled using shells

• Inter-ply interaction through contact

• Representation of the tool, double bag/membrane, and stiffening 

elements

Fibre Axial Strains show tension 

and compression in joggle area

For more information see:

Silva et al (2023), A physics-based approach to composites forming simulation. Proceedings of SAMPE 

Seattle. 

Bookending Effect
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C-Channel Example

Shell-Based Simulation

The room temperature forming process 

showed significant defects at the tool side of 

the corners

• Large predicted shear strains agree very 

well with experimental observations

At the optimal forming temperature, wrinkling 

at the corners is greatly reduced, as 

predicted by simulation 

In-plane
Shear Strain

In-Plane
Shear Strain

Validation Forming Trials performed by NRC Canada



• Plies are discretized individually by a layer of solid elements 

superimposed with shell elements at the top and bottom 

surfaces

– Solid element enables through-thickness deformation and 

Percolation Flow mechanisms

– Shell elements are key to simulate ply buckling

• Contact interactions are defined between plies (optional)

• This approach can be used to predict forming and 

consolidation-driven ply movement and defects. 

• Heat transfer analysis can be coupled as well. 
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Shell + Solid Sandwich

Shell + Solid Representation



• Ply bulk and shear behaviours and resin flow

• Two-phase (skeleton, resin) element formulation 

with stress tensor given by:

ഥ𝝈 = 𝝈𝑆𝐾 − 𝑝𝑰

• Added DOF: hydrostatic pressure of the resin 

phase (𝑝)

• Resin flow governed Darcy’s law:

𝑞 =
𝐾

𝜂
𝛻𝑝

21

Solid Elements: Coupled Pore Fluid + Stress

Shell + Solid Representation

• Material Attributes:

– Shear (𝐺12, 𝐺13, 𝐺23)

– Fiber bed compaction (𝜎33 = 𝑓(𝜖33))

– Viscosity (𝜂) 

– Permeability (𝐾)
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Forming Simulation

Shell + Solid Representation
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Ply Movement and Wrinkle Prediction

Shell + Solid Represeantation

48-ply laminate formed using 

double diaphragm forming at 

room temperature

• Comparing shear pattern and 

wrinkle formation

Micrograph images 

provided by NRC



26

Shell + Solid Representation 

Consolidation-Driven Wrinkles

• Curved sections generate pressure 

differentials between tool-side and bag-side 

surfaces of the laminate:

– Convex corners lead to higher pressure and 

corner thinning (resin outflow)

– Concave lead to lower pressure and corner 

thickening (resin inflow)

• As the laminate consolidates over a convex 

corner, the radius of the outer plies is 

reduced leading to excess fibre length.

• This excess length must be sheared out 

through either inter-ply or inter-ply shear 

mechanisms to avoid defects:

– Consolidation simulation with constrained 

edges prevents shearing, thus leading to ply 

buckling.



• A comprehensive framework for forming characterization and simulation was 

presented:

– Key deformation mechanisms were identified.

– Characterization tests were developed for uncured prepreg (Bending, Shear, Tack, …).

– Physics-based material constitutive models were developed to fit the observed data.

– Finite Element Simulation framework developed at various levels: 

• Shell-based representation suitable for forming simulation

• Shell + Solid representation suitable for modelling forming and consolidation

– Accurate representation of the tool, forming apparatus and boundary conditions are 

essential for a high-fidelity forming simulation

– It was shown that ply deformations and defects generated in FE simulations are consistent 

with observations of the experimental trials.

27

Concluding Remarks
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