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In automated deposition processes such as forming:
» The material undergoes large deformations

» There may be a large number of parts with evolving
Interactions (such as contact) between them:
— Mould
— Material layers
— Diaphragm or punch
— Grip holders

» Unlike sheet metal forming, the workpiece (laminate)
IS composed of multiple orthotropic material plies
with different fibre orientations
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Farnand et al (2017)*

* Farnand et al (2017), Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of
unidirectional prepreg composites, Part A: Applied Science and Manufacturing. ;103:168-77.



Physics-Based Forming Simulation S,

y

* Physics-based modelling is founded on our
understanding of causality of events.

* The phenomena of interest are modelled
using mathematical representations

* In Process Simulation, a physics-based model
needs to include representations of:

— Material being processed: its incoming state, its
evolution when subjected to process conditions

—Process: Sequence of events and boundary
conditions

— Equipment: Interaction of the equipment with
material and its effect on process conditions
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Key Deformation Mechanisms (=)
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Ply In-plane (axial, shear, locking) Interlaminar (shear/friction, stick-slip, tack) Ply Transverse Shear & Logrolling
‘E I§ Ll
S = B
[
Ply Bending & Buckling Tool-Part interaction Debulk & Consolidation
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Prepreg Bending {(==2)
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' Characterization Test

* Fixture inspired by original
Sachs(2014)* design

* Fixture features:

— Double roller design: minimizing
/ Rollers b &) frictional effects and providing
S Vs uniform bending moment

o

w — Fixed sample length
/

OO
Neo] O

* Fully definable test conditions:
— Temperature
— Bending Rate

,«) Moment — Bending Angle and Radius of
curvature

— Loading/Relaxation/Unloading

Bending characterization Top view of the double-roller
fixture installed in a rheometer design

* U. Sachs (2014), Friction and bending in thermoplastic composites forming process, PhD Dissertation,
Universiteit Twente.

B CONVERGENT For more information see: Lane et al (2023), Characterization testing of un-cured prepreg fabrics for forming
~—— process. Proceedings of SAMPE Seattle




Prepreg Bending
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' Constitutive Modelling: Non-linear Viscoelastic

M C  Fiber micro buckling is observed in bending samples

>  This inspired development of a non-linear

viscoelastic model that is schematically represented
v as a hinge on a viscoelastic bed

Fibres buckle on the inner
surface to accommodate
the deformation.

Fibre buckling localization
leading to hinge formation on
the inner surface of bent
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Prepreg Tack {e=z)
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' Characterization Test

* Tack is the measure of the resistance to
separation of two surfaces

« A prepreg-to-prepreg probe tack test
fixture was developed in house:
— Relatively large contact area (1°x17)
— UD or Fabric testing
— Testing prepregs at relative angles (0-0, 0-90,
0-45, ...)
— Control over process parameters:
* Temperature
« Cohesion Pressure
« Dwell time

« Separation rate
» Moisture

For more information see: Lane et al (2023), Characterization testing of un-cured prepreg fabrics for forming
B CONVERGENT process. Proceedings of SAMPE Seattle
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Characterization Tests
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Prepreg Tack Constitutive Model (=)
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' Cohesion Model Decohesion Model
1.2 4 Post-Peak
1 O.peilk Exponential
Reduction

Normal
Traction

f//////f////ﬁ%'/ﬁ,

bl g,
0. Energy of
Separation

Degree of
Intimate Contact

i

" :
Opening (at constant rate)
“ 0 Pre-peak Response 6“*":
B oE o2 timeo (Linear visco-elastic)
Degree of Intimate Contact: 01 = Royyg Viscoelastic
log( ) (At) Cohesive model for
7 _ —(&t :
_ max O1y—yr = O1y_r€ \7T decohesion stage
[=e ) (1) (1 _ o~(%9)
where F is the pressure flow index +1(Ey—E,) (T) (A_t) l—e =
P(t
F =j (©) dt _((5—5i))y
uX,T) R=e \ < 1.0
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' Transverse Shear In-plane Fabric
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Common Component Architecture (CCA) =)
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' Comprehensive Library of Material Constitutive Models
State-variable based, expandable material model database

Finite Element Software CAD Software

Integrated MATERIAL PROPERTIES
e 140+ constitutive models ——

 Largest high-fidelity process simulation Interface
composite materials library anywhere:
— 30+ open data sets

— 10+ Distribution C data sets (created for and
managed on behalf of the US Government)

— Many more proprietary data sets created |
for customers .
User Defined Material
Constitutive Models

* Interlinked process parameters
» User-defined Constitutive Models

FORMING

Common Component Architecture (CCA)

Resin
Cure
Shrinkage
CTE
Micro-
mechanics
Shell
Bending

REE
Viscosity

w
c 2
83
or ©
=

3RD Party Commercial &
Research Codes
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Contact Algorithm

Solid + Shell Element 1
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Ply In-plane: A stiffness

——)

Ply Bending: D stiffness

Interlaminar (friction, stick-slip, tack)

Tool-Part interaction

Ply Transverse Shear & Logrolling

P il l'i

Debulk & Consolidation
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1 Silva et al, Defect prediction during forming and consolidation of composite
materials using finite element analysis, ASC 34th Technical Conference, 2019




Forming Simulation Solution Levels \Q)
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Solution : . Computational

FE Representation Application Features

Level Cost

1 Single Membrane Dry fabric forming Shear locking Explicit Fast
Hot Drape Prepreg Forming Level 1 +
. . . Fast to
. Effect of temperature and evolving * In-plane / bending decoupling -
2 Ply-wise Shell o o . : Explicit Moderately
degree-of-cure/crystallization » Elastic/Viscoelastic behaviour Expensive
» Effect of forming rate » Temperature and DoC dependencies P
Ply-wise Shell + Cross-section Prepreg Forming Level 2 +
3 PU Solid * Level 2 + * Debulk and consolidation Implicit Expensive
(optional thermal » Consolidation & wrinkling * Resin flow Dynamic P
analysis coupling) * Non-uniform temperature/cure * Thermal predictions

BEDNVEREENT
.




—%

Shell-based Simulation ((=2)
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' C-Channel Example

 Plies modelled using shells

Bookending Effect

* Inter-ply interaction through contact

» Representation of the tool, double bag/membrane, and stiffening
elements

,‘?:n-ri-n:-l
COMPRO

Fibre Axial Strains show tension
and compression in joggle area

For more information see:
Silva et al (2023), A physics-based approach to composites forming simulation. Proceedings of SAMPE
BEDNVEREENT (2023), A phy PP P J J

Seattle.




Shell-Based Simulation
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' C-Channel Example

The room temperature forming process

showed significant defects at the tool side of
the corners

 Large predicted shear strains agree very
well with experimental observations

—

At the optimal forming temperature, wrinkling
at the corners is greatly reduced, as
predicted by simulation

In-plane
Shear Strain

In-Plane
Shear Strain
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Shell + Solid Representation
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V' shell + solid Sandwich

* Plies are discretized individually by a layer of solid elements
superimposed with shell elements at the top and bottom
surfaces

— Solid element enables through-thickness deformation and
Percolation Flow mechanisms

— Shell elements are key to simulate ply buckling

« Contact interactions are defined between plies (optional)

 This approach can be used to predict forming and
consolidation-driven ply movement and defects.

« Heat transfer analysis can be coupled as well.
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Shell Element

Coupled P-U solid element

Shell Element
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Shell + Solid Representation (Q/)

' Solid Elements: Coupled Pore Fluid + Stress

* Ply bulk and shear behaviours and resin flow

Shell Element

* Two-phase (skeleton, resin) element formulation A =l
with stress tensor given by: ¥ y
6. — O-SK _ pI Coupled P-U solid element
/ﬁ /p
« Added DOF: hydrostatic pressure of the resin 1£ 74
phase (p) Shell Element
« Material Attributes:
 Resin flow governed Darcy’s law: — Shear (G12, Gi3, Gz3)
— Fiber bed compaction (o33 = f(€33))
q = 5 Vp — Viscosity (n)
n — Permeability (K)
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Shell + Solid Representation ‘&J)

' Forming Simulation

1 Al
2 ‘ 4 > 001637 =)
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Shell + Solid Represeantation ((=2)
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' Ply Movement and Wrinkle Prediction

48-ply laminate formed using
double diaphragm forming at
room temperature

« Comparing shear pattern and

wrinkle formation

Micrograph images
provided by NRC
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Shell + Solid Representation
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' Consolidation-Driven Wrinkles

» Curved sections generate pressure
differentials between tool-side and bag-side
surfaces of the laminate:

— Convex corners lead to higher pressure and
corner thinning (resin outflow)

— Concave lead to lower pressure and corner
thickening (resin inflow)
» As the laminate consolidates over a convex
corner, the radius of the outer plies is
reduced leading to excess fibre length.

» This excess length must be sheared out
through either inter-ply or inter-ply shear
mechanisms to avoid defects:

— Consolidation simulation with constrained

edges prevents shearing, thus leading to ply
buckling.

bbbbbbooo00!
2am0000D000
DN OWRHLON:

---------

COMPRO

REINBRES

22

bbbboooooooo

P
@n

BEDNVEREENT -
.



—~X

Concluding Remarks (=)
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« A comprehensive framework for forming characterization and simulation was
presented:
— Key deformation mechanisms were identified.
— Characterization tests were developed for uncured prepreg (Bending, Shear, Tack, ...).
— Physics-based material constitutive models were developed to fit the observed data.

— Finite Element Simulation framework developed at various levels:
 Shell-based representation suitable for forming simulation
» Shell + Solid representation suitable for modelling forming and consolidation

— Accurate representation of the tool, forming apparatus and boundary conditions are
essential for a high-fidelity forming simulation

— It was shown that ply deformations and defects generated in FE simulations are consistent
with observations of the experimental trials.
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