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• Composite structures are (unavoidably) subjected to 

various (elevated) temperatures during service

• Epoxy matrix material properties decline with temperature

• UD CFRP E1, XT →

with increasing temperature E2,G12             ↓

XC,YT, YC, SL ↓

GIC → /↗︎

GIIC →

• The effect of elevated temperature on failure is hard to 

predict → combination of a multitude of influencing factors

Temperature Dependency of CFRP

[Airbus]

[Polestar]

The matrix's mechanical performance decreases with increasing environmental 

temperature and negatively influences the damage tolerance.
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Determination of Impact Resistance 

and Residual Strength

CAI

UD-Prepreg: Hexcel HexPly M21/T800s 265 g/m2

Tg:  171 °C (Onset)

Layup: [45/0/-45/90]2s

Laminate Thickness: 4.1 mm

ASTM D7137 M

Temperature: 20 °C + 80 °C

Simulation of LVI and CAI at 

Elevated Temperature

LVI CAI

• Mechanical characterisation of M21/T800s at 

temperatures between 20 °C and 100 °C 

• Implementation of temperature dependency into the 

Continuum Damage code CompDam

• Simulation of LVI and CAI under temperature influence 

with Abaqus/Explicit

CompDam, v2.5.0, F. A. Leone, A.C. Bergan and C G. Dávila, 

https://github.com/nasa/CompDam_DGD, 2019

ASTM D7136 M

Impact Parameters:

Energy: 15-21 J

Temperature: 20 °C – 80 °C

LVI

Temperature Dependency of Damage Tolerance: Approach
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Material

Characterisation

Interpolation

Functions

Implementation into CDM and

Single Element Testing

LVI and CAI

Simulation

CDM is based on CompDam
Abaqus/Explicit

Temperature Dependency of Damage Tolerance: Approach Simulation
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Temperature Dependency of Damage Tolerance: Material Characterisation

Stress-free temperature: 171 °C (determined with a bistable laminate)

Mechanical Properties

Temperatures: 20 °C - 100 °C

Tensile Tests: E1, XT, E2(T), YT(T).      ASTM D 3039

Compression Tests: YC(T), XC(T), ASTM D 6641

Shear Tests: G12(T), SL(T) ASTM D 3518

Interlaminar Properties:

Temperature: 20 °C

Mode I: GIC ASTM D 5528

Mode II: GIIC ASTM D 7905
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Fibre Failure:

Tension (Temperature independent): 

Damage initiation: Max-stress criterion

Damage propagation: Bi-linear energy based degradation

Compression:

Damage initiation: Temperature dependent max-stress criterion

Damage propagation: Temperature independent 

Bi-linear energy based degradation

Matrix Failure:

Damage initiation:

– Temperature dependent

– Accounts for friction on fracture plane

Damage Propagation:

– Temperature independent Benzeggagh-Kenane Law 

Material Model: Failure

CDM is based on CompDam
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Single-Element Tests: Temperature-Dependent Failure Envelope

𝝈𝟏𝟏 − 𝝈𝟐𝟐 Plane 𝝈𝟐𝟐 − 𝝉𝟏𝟐 Plane
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Non-linear shear behaviour is represented by the Ramberg-Osgood equation:

Material Model: Shear Nonlinearity

Shear Modulus Ramberg-Osgood Parameter Shear Response
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Abaqus Cohesive Contact

Quadratic Stress Initiation Criterion:

Qualitative interface strength degradation is coupled to  

experimental values:

Mode I initiation to YT

Mode II initiation to ST

Degradation:

Temperature independent Benzeggagh-Kenane Law 

Material Model: Delamination modelling



10

With increasing temperature failure modes change:

Severe fibre failure occurs.

Low Velocity Impact: Top Layer Damage
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Delamination distribution and size is highly temperature dependent. 
At different temperatures, different impact energies can result in the same 

delamination area.

LVI: Delamination Damage
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CAI: Residual Strength

Delamination

Fibre-Failure

Temperature has a more decisive influence on the compressive residual strength 

than the impact parameters.
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Research Hypothesis

Understanding and adapting the matrix's damage behaviour is fundamental to improve the damage 

tolerance of high-performance composites.

The matrix's mechanical performance decreases with 

increasing environmental temperature and negatively 

influences the damage tolerance.

The composite's layup can control the occurring matrix 

damage modes. Thin-ply, bio-inspired helicoidal layups 

enable delamination-free composites.

The addition of carbon nanoparticles into the matrix 

introduces additional energy-consuming damage 

mechanisms and increases the damage tolerance.

Delamination

Fibre-Failure
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